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A novel self-organizing neuro-fuzzy multilayered classifier (SONeFMUC) is

introduced in this paper, with feature selection capabilities, for the classification

of an IKONOS image. The structure of the proposed network is developed in a

sequential fashion using the group method of data handling (GMDH) algorithm.

The node models, regarded as generic classifiers, are represented by fuzzy rule-

based systems, combined with a fusion scheme. A data splitting mechanism is

incorporated to discriminate between correctly classified and ambiguous pixels.

The classifier was tested on the wetland of international importance of Lake

Koronia, Greece, and the surrounding agricultural area. To achieve higher

classification accuracy, the image was decomposed into two zones: the wetland

and the agricultural zones. Apart from the initial bands, additional input features

were considered: textural features, intensity–hue–saturation (IHS) and tasseled

cap transformation. To assess the quality of the suggested model, the

SONeFMUC was compared with a maximum likelihood classifier (MLC). The

experimental results show that the SONeFMUC exhibited superior performance

to the MLC, providing less confusion of the dominant classes in both zones. In

the wetland zone, an overall accuracy of 89.5% was attained.

1. Introduction

Land cover classification of remotely sensed images has attracted considerable

research interest over the past decades. Along with the numerous applications in the

field, several problems have been reported that reduce the accuracy and reliability of

the resulting thematic maps. The presence of mixed pixels, the resolution of the

acquired images, the reliability of training data, the number of classes and the high

degree of spectral overlapping between the classes are key reasons for achieving low
classification accuracies.

To tackle the problems encountered in land cover image classification, the

research community has turned primarily to two major areas of interest. The first

involves the enhancement of features used by the classification algorithm, as applied

to the satellite image. Although original bands of satellite sensors remain the basic
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source of information in multispectral image classification, advanced features such

as topographic information (Richards et al. 1982), tasseled cap features (Oetter et al.

2001), textural analysis (Haralick and Shapiro 1992) and wavelet decomposition

(Dekker 2003) have been developed to reduce the overlapping of the classes in the

original feature space. However, the use of new features results in complex models

because of the large dimension of the feature space. To arrive at the appropriate

feature set, several techniques make use of preprocessing methods, such as principal

components analysis (PCA; Li and Yeh 1998) and the time-consuming method of

trial-and-error (Shackelford and Davis 2003).

Second, more sophisticated classifiers are found to be a major factor in improving

the classification results. The first type of classifiers used mainly statistical

parameters (Thomas et al. 1987), considered as ‘hard’ classifiers, such as the

maximum likelihood classifier (MLC). However, the assumption of a normal

distribution of the data is a major drawback of such classifiers.

The remarkable achievements in the development of fuzzy classifiers, regarded as

‘soft’ classifiers, provide a fruitful approach (Wang 1990, Bardossy and Samaniego

2002). These classification techniques were found to be more appropriate in tackling

the mixed pixels problem (Tso and Mather 2001) because they take into

consideration the ambiguities concerning the correct class to which a pixel belongs.

However, Foody (1999) proposed that, to resolve the mixed pixel problem, a

continuum of classification fuzziness should be defined, so that not only the

classifier but also the training and testing stages should be fuzzy.

Another promising type of classifier is derived from the theory of neural networks

(Foody 1995, Kavzoglu and Mather 2003). Neural networks are capable of dealing

with complex problems, with a high degree of overlapping between the classes, by

conducting a non-linear transformation of the original feature space through the

layers of the network. Along this direction, a great variety of neural network

architectures and training algorithms have been reported in the literature, with

productive results (Atkinson and Tatnall 1997, Keramitsoglou et al. 2005).

Nevertheless, most of the classifiers of this type require the definition of a large

number of parameters, such as the number of hidden layers, the number of nodes,

the range of the initial weights and the number of training data, which are difficult

to decide on. To cope with this problem, Kavzoglu and Mather (2003) proposed a

set of guidelines by conducting an extensive search of suggestions reported in the

literature. In recent years a considerable amount of research has focused on the

development of classifiers combining fuzzy logic and neural networks, thus resulting

in superior classification methods (Carpenter et al. 1997, Lin et al. 2000) for solving

remote sensing problems. An alternative approach is to combine different classifier

types (Kuncheva et al. 2001), by exploiting the best attributes of every classifier. In

particular, in land cover classification, Giacinto and Roli (1997) proposed a method

of combining the classification results of statistical and neural network classifiers

using a modified k-nearest-neighbour rule as a metaclassifier. Briem et al. (2002)

studied the application of boosting, bagging and consensus theory to derive multiple

classifiers that outperformed the single classifiers on multisource remote sensing

data.

The potential, however, of using a cascaded architecture or a sequential

combination of individual classifiers has not been exploited enough, as most of

these architectures are based on a hierarchical combination of classifiers (Giacinto

and Roli 1997, Kumar et al. 1997, Briem et al. 2002). Wilkinson et al. (1995)
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proposed a voting/rejection approach, where an MLC was used in parallel with a

neural network in the first stage. In the second stage, an independent neural network

was trained to classify the ambiguous pixels of the first stage. Benediktsson and

Kanellopoulos (1999) modified the voting/rejection of Wilkinson et al. (1995) by

using a multisource classifier based on consensus theory instead of an MLC, and

used the decision boundary feature extraction (DBFE) method as a tool for reducing

the large dimensionality of the input space for hyperspectral data. Although the

results showed that the logarithmic opinion pool (LOGP) classifier achieved the best

performance, the authors stressed the promising attributes and results of the voting/

rejection approach. However, the neural network in the second stage of the

algorithm has to be supplied with a large number of training data to achieve a

satisfactory classification performance. Hence, the efficiency of the method is highly

dependent on the degree of agreement of the classifiers in the first stage of the

classification algorithm (Petrakos et al. 2001). Moreover, the use of a feature

extraction algorithm as a preprocessing tool increased the computational cost.

The aim of the current study was to develop a novel self-organizing neuro-fuzzy

multilayered classifier (SONeFMUC) with feature selection attributes, gradually

evolved in a self-organizing manner, using the group method of data handling

(GMDH) algorithm (Ivakhnenko 1968). Specific objectives include (i) the

application of the SONeFMUC to a very high resolution (VHR) IKONOS image

using the initial bands and advanced features for land cover classification of a

protected wetland and its surrounding agricultural area, and (ii) the validation of the

SONeFMUC by comparison with an MLC.

2. Materials and methods

2.1 Study area

Lake Koronia is located in a tectonic depression in northern Greece (409 4199 N, 239

0999 E). Its watershed covers an area of 780 km2, and it formerly drained eastwards

into Lake Volvi, then into the sea. The climate of the region is transitional between

Mediterranean and temperate. The mean annual precipitation is 455 mm, with a

seasonal peak in December and a minimum in August (Mitraki et al. 2004). The

lake–wetland ecosystem is surrounded by an intensively cultivated agricultural area

(figure 1). The dominant agricultural crops are maize, alfalfa and cereals. There is no

exploitation of surface water, and the only source of fresh water for irrigation,

industrial and urban use is through groundwater resources. Irrigated agriculture is

an important economic activity in the area, but the recent development of numerous

pump wells has resulted in depletion of the aquifer, and a subsequent decrease in the

lake’s water level. The industrial sector has also increased in the past decade,

discharging untreated effluents in the lake from fabric dyeing, food and dairy

processing activities (Zalidis et al. 2004).

Because of the above-mentioned pressures, Lake Koronia became progressively

more eutrophic, especially after the early 1990s, and is currently hypertrophic

(Mitraki et al. 2004). Along with the drastic alteration in the water level, which

reached a decrease of 80%, the natural ecosystem has suffered severe degradation.

There has been a significant loss of volume and habitat heterogeneity in the lake and

wetland. The emergent macrophyte community (dominated by Phragmites australis)

has shifted lakewards and expanded on a recently exposed lake bed (Alexandridis
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et al. 2007). In recognition of its ecological importance, and to prevent further

degradation, the lake–wetland system of Lakes Koronia and Volvi is protected by a

number of legal and binding actions: it is a Wetland of International Importance

according to the Ramsar Convention (site code 57, area 163.88 km2), a Special

Protected Area designated by the implementation of European Directive 79/409/

EEC (site code GR1220009, area 156.71 km2), and a Site of Community Importance

following the implementation of the European Habitat Directive 92/43/EEC (site

code GR1220001, area 269.47 km2). The relevant national and local authorities have

responded with the identification and mapping of habitats (Hellenic Ministry of

Environment 2001), the compilation of the Master Plan for the restoration of Lake

Koronia, and the Revised Restoration Plan for Lake Koronia (Zalidis et al. 2004).

However, continuous monitoring of natural and agricultural environment is

required according to the proposed management actions, and to fulfil the

obligations to the international and European legislation.

2.2 Dataset used

An IKONOS bundle image with a 1 m spatial resolution panchromatic image and a

4 m multispectral (three visible and one near-infrared) image covered 134 km2 of the

study area. The image was acquired on 7 August 2005, was clear from clouds and

was acquired at a nadir view angle to minimize noise reflectance from topographic

effects. A digital elevation model (DEM) of the area was used for orthocorrection of

the satellite image. It was produced at 5 m pixel size by contours with a height

interval 4 m that were digitized from topographic maps of scale 1 : 5000 using the

ANUDEM interpolation method (Hutchinson 1988).

Figure 1. Location map and main land cover of the study area.
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An extensive field survey was conducted at the first days of September 2005 to

identify land cover classes that referred mainly to the agricultural and wetland areas,

and to collect training and testing samples for the image classification and its

accuracy, respectively. Using a Global Positioning System (GPS) receiver embedded

in a palm top, 3920 locations were selected at regular intervals along the agricultural

road network. The land cover on these locations was identified by visual inspection

and subsequently divided into 13 classes. The classification scheme included six crop

types, five wetland habitats (following Annex I of Habitats Directive 92/43/EEC)

and two ancillary land cover types (following the CORINE Land Cover

nomenclature). The sampled points were separated into two sets using the random

stratified method: the training set (70%) and the test set (30%).

2.3 Manipulation of the dataset

The IKONOS image was orthorectified in the Greek Geodetic Reference System

with the use of the DEM and ground control points that were collected from black

and white photomaps of 1 m pixel size. The root mean square (RMS) errors were

0.92 m and 2.41 m for panchromatic and multispectral images, respectively. A pan-

sharpened image was produced using forward–reverse principal components

transforms (Chavez et al. 1991), with the panchromatic image replacing the first

principal component. This new image was useful for evaluating and minimizing the

bias in the samples that were selected in the fieldwork. Atmospheric correction was

not applied as it has little effect on classification accuracy when single dates of

remotely sensed data are to be classified, as long as the training data from the image

to be classified have the same relative scale (corrected, uncorrected) (Kawata et

al.1990, Song et al. 2001).

Advanced features from the multispectral image were calculated using the initial

four bands of the image. These features can be categorized into two groups: textural

and spectral features. Textural analysis using grey level co-occurrence matrices

(GLCMs; Haralick and Shapiro 1992) is common practice in land cover image

classification (Lin et al. 2000) to decrease the degree of overlap between the various

types of classes. The image is raster scanned with sliding windows of M6M

dimensions. A GLCM for each window is calculated, indicating how often different

grey levels (i, j) occur with a specific direction (h50u, 45u, 90u, 135u) and distance (d)

between the pixel centres. Assuming that G grey levels occur within the image, a

G6G matrix is computed, with the (i, j)th element of the matrix given as

p i,jð Þ~f d,h
ij

,XN

i

XN

j

f d,h
ij ð1Þ

where i and j refer to the rows and columns of the matrix, respectively, f d,h
ij is the

frequency of occurrence of grey levels (i, j) separated by a distance d and a direction h,

and N is the total number of pixels in the window for a particular value of d. Originally,

16 measures were proposed that derived from each co-occurrence matrix. Among

them, four are considered to be the most important: Contrast, Angular Second

Moment (ASM), Correlation and Homogeneity. They are calculated as follows:

Contrast~
XG

i~1

XG

j~1

i{jj j2 p i,jð Þ ð2Þ
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which is a measure of the local variations between a pixel and its neighbours,

Angular Second Monment~
XG

i~1

XG

j~1

p i,jð Þ2 ð3Þ

which is a measure of uniformity,

Correlation~
XG

i~1

XG

j~1

i{mð Þ j{mð Þp i,jð Þ
�

s2 ð4Þ

which is a measure of how correlated is a pixel to its neighbour, and

Homogeneity~
XG

i~1

XG

j~1

p i,jð Þ= 1z i{jj jð Þ ð5Þ

which measures the closeness of the distribution of elements in the GLCM to its

diagonal. The above textural analysis was applied to the four bands of the IKONOS

image, providing us with a total of 16 features.

Two different colour spaces were produced from the initial bands and served as

input data in the image classification. The first uses intensity (I), hue (H) and

saturation (S) as the three positioned parameters (in lieu of R, G and B). This is an

advantageous system as it presents colours that are closer match to human colour

perception. The intensity represents the total amount of light in a colour, the hue is

the property of the colour determined by its wavelength, and the saturation is the

purity of the colour (Zhang and Hong 2005). For the calculation of IHS

transformation only three bands are needed, so a pseudo-colour RGB composite

of IKONOS using channels four, three and two respectively was used.

A second colour space, which is a linear transformation of the four multispectral

bands of the IKONOS image, was applied that offers a means to optimize

information extracted for vegetation studies, associated with the classes of interest.

This transformation is called the tasseled cap (Kauth and Thomas 1976) and has

produced three data structure axes that define the vegetation information:

Brightness, Greenness and Wetness. These new features are sensor dependent, and

until recently they were only available for Landsat 5 and 7 images. Horne (2003),

using approximately 200 different scenes of IKONOS images globally, managed to

derive tasseled cap coefficients for IKONOS images.

3. Development of the SONeFMUC

3.1 The SONeFMUC architecture

The suggested neuro-fuzzy classifier is a multilayered structure, as depicted in

figure 2. The network consists of , layers (,50,…,M), with the ,th layer including

N, neurons. The neurons are defined as fuzzy neuron classifiers (FNCs), denoted as

FNC
‘ð Þ

j , where j50,…,N, and ,50,…,M. The input layer ,50 includes the m

network inputs, x1, x2, …, xm, representing the feature components, while the

output layer ,5M comprises the output node FNC
Mð Þ

1 , providing the overall

network’s decision. The neuron models in each layer are regarded here as generic

local classifiers, working in a subregion of the feature space and represented by

fuzzy rule-based systems. Parent FNCs at each layer are combined to generate a

descendant FNC at the next layer, with better classification capabilities. The generic
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node classifiers perform successive feature transformations and decisions, using the

distributed fuzzy rule bases and the fuzzy reasoning approach. Hence, the

classification task is achieved sequentially by the FNCs arranged along the layered
structure of the SONeFMUC.

In a supervised learning scheme, the design of the classifier is based on a set of

classified examples, used to establish the association between the pattern attributes

and the class labels. Consider that the patterns are distributed over a set of M disjoint

classes. Let us assume a training data set comprising N input–output observation

pairs: DN~ x q½ �,C q½ �ð Þ,q~1, . . . ,Nf g, where x q½ �~ x1 q½ �, . . . ,xm q½ �½ �T denotes the

vector of feature components, T denotes the transpose vector, C [q] is the class label

for the qth observation, and C5{C1,…,CM} is the set of classes. For convenience, the

features are normalized in the range [0,1], forming the feature space F5[0,1]n.

Unlike conventional classifiers that assume a given pattern to a single class, the

suggested SONeFMUC model is a fuzzy classifier performing a map FR[0,1]M.
Accordingly, they produce a decision output vector D xð Þ~ d1 xð Þ, . . . ,dM xð Þ½ �T
embracing all classes, where dj xð Þ[ 0,1½ �, j~1, . . . ,M represents the grade of

certainty in the assertion that pattern x belongs to class Cj. Based on the

classification data, the structure of the SONeFMUC is progressively expanded in

layers using a structure learning algorithm.

3.2 FNC models at the first layer

The structure of the FNC
1ð Þ

j at layer 1 is shown in figure 3. The generic model

consists of two fuzzy rule based-systems: the so-called fuzzy partial description

(FPD) and a decision making fuzzy unit (DMFU). Therefore, the FNCs at the first

layer are represented as a pair of modules: FPD
1ð Þ

j ~ FPD
kð Þ

j ,DMFU
1ð Þ

j

n o
, j~

1, . . . ,N1. In the following, we describe the functions of the constituent units.

3.2.1 Fuzzy partial description (FPD). The FPDs are represented by fuzzy rule-

based Takagi Sugeno Kang (TSK) systems (Takagi and Sugeno 1985). Instead of

Figure 2. A general SONeFMUC architecture.
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receiving the entire attribute set {x1, x2,…,xm}, the input vector of FNC
1ð Þ

j , denoted

by x
1ð Þ

j , contains a small subset of p features taken from the above set:

x
1ð Þ

j ~ xj1,xj2, . . . ,xjp

� �T[ <p. The feature subsets associated with each FPD are

derived through recombinations of the original features, a task achieved during the

structure learning process. The number of inputs (p) exciting the FPDs at the first

layer is a design parameter specified by the user.

The TSK systems considered in this paper provide two outputs. The output vector

is denoted as y
1ð Þ

j ~ y
1ð Þ

j,1 ,y
1ð Þ

j,2

h iT

, where the output variables are normalized in the

range y
1ð Þ

j,k [ 0,1½ �, k~1,2. The output space of FNC
1ð Þ

j formed by the components

y
1ð Þ

j,1 , y
1ð Þ

j,2 coincides with the class space; that is, the space where the classes are

defined. Definition of the classes relates to the class targeting issue. To this end, a

target value for both output variables is assigned for each class:

y
Cjð Þ

d ~ y
Cjð Þ

d,1 ,y
Cjð Þ

d,2

� �T

, Cj, j~1, . . . ,M. The class ordering is accomplished by

following a heuristic scheme determined by the designer. Considering two model

outputs for the FPDs provides flexibility for arranging the classes, based on their

relative distance within the feature space. Furthermore, an increased number of

classes can be considered, allowing SONeFMUC models to handle multiclass

problems effectively.

For the sake simplicity, in the remainder of this section we assume that the input

and output vector of the FPDs are denoted by x~ x1,x2, . . . ,xp

� �T
and y~ y1,y2½ �T ,

respectively. Each premise variable xi (i51,…,p) is described by two-sided Gaussian

fuzzy sets A
ið Þ

j ~ A
ið Þ

j,L,A
ið Þ

j,R

n o
j~1, . . . ,Kið Þ located at a centre value m

ið Þ
j [Xi. The

membership functions of the left- and right-hand parts are given by

m
ið Þ

j,L xið Þ~exp {
xi{m

ið Þ
j

� �2

s
ið Þ

j,L

� �2

2
64

3
75, for xiƒm

ið Þ
j ,

m
ið Þ

j,R xið Þ~exp {
xi{m

ið Þ
j

� �2

s
ið Þ

j,R

� �2

2
64

3
75, for xiwm

ið Þ
j

ð6Þ

where s
ið Þ

j,L and s
ið Þ

j,R are the membership widths of A
ið Þ

j,L and A
ið Þ

j,R, respectively.

Figure 3. An example of the structure of a node in the first layer of the network. The node
incorporates two inputs, two continuous outputs, an FPD unit and a DMFU.
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Following a grid-type partition approach, we create a total number of R~Pr
i~1Ki

rectangular fuzzy subspaces, Ai, determined by the Cartesian product:

Ai~A
1ð Þ

i1 |A
2ð Þ

i2 | � � �|A
rð Þ

ir i~1, . . . ,Rð Þ. Figure 4 shows an illustrative two-dimen-

sional fuzzy partition after data clustering. The FPDs are described by R TSK-type

fuzzy modelling rules of the form:

R ið Þ
m : IF x1 is A

1ð Þ
i1 AND � � �AND xp is A

1ð Þ
ip THEN y1~g

ið Þ
1 xð Þ AND y2~g

ið Þ
2 xð Þ ð7Þ

Traditionally, the TSK rule functions are represented as linear polynomials of the

FPD inputs:

g ið Þ
r xð Þ~w

ið Þ
0,rzw

ið Þ
1,rx1z . . . zw ið Þ

p,rxp, r~1,2 ð8Þ

Ignoring the linear terms in equation (8), we are led to rules with crisp consequents,

i.e. g
ið Þ

r xð Þ~w
ið Þ

0,r.

For each pattern x submitted to the FPD, the firing degree of the rules are

calculated as

mi xð Þ~P
R

j~1
m

ið Þ
ij

xð Þ ð9Þ

The outputs of the FPDs are then derived by

yr~
XR

s~1

mi xð Þg ið Þ
r xð ÞPR

s~1

ms xð Þ
, r~1,2 ð10Þ

Initially, the fuzzy sets A
ið Þ

j are evenly distributed along the xi axis. To improve the

feature transformation of the FPDs, a K-means clustering algorithm (Lee et al.

Figure 4. Premise partition after tuning the membership functions using the K-means
clustering algorithm.
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2001) is applied on the membership centres along each input. The goal is to locate

the fuzzy sets in a way that the resulting fuzzy partitions are focused on regions with

large data collections. The initial placement of the fuzzy sets (broken lines), as well

as their tuning after data clustering (solid lines), is shown in figure 4. The values of

s
ið Þ

j,L and s
ið Þ

j,R are determined so that consecutive fuzzy sets exhibit a degree of

overlapping of 0.5.

Based on the set of rules obtained above, we proceed to a rule base simplification

procedure with the scope to reduce the number of rules. Along this direction, each

modelling rule R
ið Þ

m is evaluated by computing the percentage concentrations of

patterns, enni, over the entire training set: enni~
ni

N
|100 %ð Þ, i~1, . . . ,R. ni stands for

the number of patterns that are included in the antecedent part A
ið Þ

j with a degree of

firing fulfilling mi(x)§0.5. The values of enni are then arranged in descending order

and compared to a prescribed threshold j set up by the user (i.e. j55%). Fuzzy rules

exhibiting enni§j are retained while the rest of them are discarded. At the end of this

process we obtain a simplified fuzzy model (FPD), including a reduced number of

rules eRRvR. Patterns that are located at fuzzy cells corresponding to removed rules

are covered by the neighbouring strong ones. This is made possible by noting that

the fuzzy regions are described by Gaussian rather than triangular memberships, of

appropriate centres and widths. Accordingly, every pattern takes a stronger or

weaker firing, assisting its manipulation by the reduced rule base.

Having determined the premise parameters (means and widths), the outputs of the

FPDs are linear with respect to the consequent weights. Therefore, optimal

estimates of these parameters can be obtained using the recursive least square

estimate (RLSE) method (Goodwin and Sin 1984). Given a specific class targeting,

the RLSE method calculates the appropriate values of the consequent weights so

that the distance between the FPD outputs and the class targets is minimized. As a

result, a supervised learning task is achieved with the following objective: patterns

x
1ð Þ

j qð Þ belonging to a particular class Cj should produce an output y
1ð Þ

k qð Þ located in

a neighbourhood of the respective class target y
Cjð Þ

d , j~1, . . . ,M. From this point

of view, each FPD realizes a non-linear mapping from the initial feature space to a

transformed output space. The FPD outputs can be regarded as transformed

versions, y
1ð Þ

j ~FPD
1ð Þ

J x
1ð Þ

j

� �
, of the input features, which are more separated than

the original features. Feature transformation facilitates discrimination of the

patterns along the classes, thus leading to more accurate classification results

obtained by the following DMFUs.

To show the function undertaken by the feature transformation, an illustrative

case is indicated in figure 5 for a four-class problem (M54) with two input features.

As can be seen, the class examples in the original feature space (x1, x2) are mixed

with each other, making discrimination a difficult task. However, the transformed

patterns defined by the FPD outputs are more separated because of the fuzzy

inference mechanism and the effectiveness of the parameter learning algorithm

(RLSE).

3.2.2 Decision making fuzzy unit (DMFU). The DMFU in each FNC follows the

associated FPD module, with the aim of determining the degree of support given by

the local classifier in each class (figure 3). The continuous outputs of the FPD,

y5[y1, y2]T, serve as inputs of the DMFU, while its output is an M-dimensional

vector, denoted as DN, that provides the soft decision profile of the neuron

classifier.
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Each yr[ 0,1½ � r~1,2ð Þ is divided into Lr (r51, 2) fuzzy sets, namely

B
rð Þ

1 , . . . ,B
rð Þ

Lr

n o
. The values of Lr are decided based on the number of classes at

hand, so that: L16L2§M. The fuzzy sets of DMFU are now represented by

trapezoidal membership functions, centred at the target values of each class

(figure 6). The parameters of the intermediate membership functions are defined

as a
rð Þ

i ~ i{1ð Þ= Lr{1ð Þ{r, b
rð Þ

i ~ i{1ð Þ= Lr{1ð Þzr, c
rð Þ

i ~i= Lr{1ð Þ{r, d
rð Þ

i ~

i= Lr{1ð Þzr for i52,…,Lr21, r51, 2, where r is a small percentage of 1/Lr (i.e.

r520%) that controls the degree of overlapping between adjacent fuzzy sets. For

the left-most and the right-most membership functions we have:

a
rð Þ

1 ~b
rð Þ

1 ~0, c
rð Þ

1 ~a
rð Þ

2 , d
rð Þ

1 ~b
rð Þ

2 , a
rð Þ

Lr ~c
rð Þ

Lr , b
rð Þ

Lr~d
rð Þ

Lr , c
rð Þ

Lr~d
rð Þ

Lr~1

Using the grid partition, we obtain L16L2§M fuzzy subspaces. An indicative

partition of the DMFU for a four-class case (M54) is shown in figure 7. In order to

represent M54 classes, we define L152 and L252 membership functions. For each

rectangular subspace we define a classification rule of the form:

R ið Þ
c : IF y1 is B

1ð Þ
i1 AND y2 is B

2ð Þ
i2 THEN y1 q½ �,y2 q½ �ð Þ is Cj ð11Þ

where Cj[C is the label for class j.

Figure 5. An illustrative graphical representation of the non-linear mapping implemented
by the FPD unit for an artificial problem of M54 classes. Class 1 patterns are represented by
+ , class 2 by %, class 3 by # and class 4 by m.

Figure 6. Shape of the membership functions in the premise part of the DMFU with Lr53.

A SONeFMUC model for land cover classification 4071



The fuzzy inference mechanism of the DMFUs is realized in two steps:

Step 1. Calculate the degree of firing of the classes, bCi
, i51,…,M

bCi
~m

1ð Þ
i1 y1 qð Þð Þ ^ m

2ð Þ
i2 y2 qð Þð Þ ð12Þ

Step 2. Calculate the normalized firings:

bCi
~bCi

,XM
r~1

bCr
ð13Þ

The output of the DMFU is a vector, DN, derived as follows:

DN~ dn1, . . . ,dnm½ �T~ bC1
, . . . ,bCM

� �T ð14Þ

The components dni[ 0,1½ �, i~1, . . . ,M, represent the degree of support given by

the local classifier FNC
1ð Þ

j under the hypothesis that a particular pattern y[q] belongs

to class i. The soft outputs of DMFU can be hardened to make a crisp decision upon

the class each pattern belongs to, such that DN y q½ �ð Þ~Cx[dncx
~

max dnvf g, v~1, . . . ,M. For the example considered in figure 5, the class labels

can be easily assigned as shown in figure 7. The broken lines split the class decision

regions whereas the solid lines represent confident regions, where patterns are

classified with a high grade of certainty.

Each FNC
1ð Þ

j provides two output sources: a vector of continuous outputs

yj5[yj,1, yj,2]T and an M-dimensional vector DN
1ð Þ

j , the output of the DMFU
1ð Þ

j , that

includes the soft decision supports for all classes (figure 3). The outputs of the FNCs

at layer 1 serve as inputs to the FNCs to be generated in the second layer.

3.3 FNC models at higher layers

The general structure of the FNC
‘ð Þ

k at higher layers (‘§2) is demonstrated in

figure 8. Two parent FNCs from the preceding layer are combined to generate a

Figure 7. Graphical representation of the class decision regions designed by the DMFU for
the artificial problem of four classes.
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descendant FNC at that layer. The neuron classifiers are now represented by the

triple: FNC
‘ð Þ

k ~ FPD
‘ð Þ

k ,DMFU
‘ð Þ

k ,F ‘ð Þ
k

n o
. To exploit the information acquired by

these parent classifiers we make use of a fusion scheme, a common practice in

combining classifiers (Kuncheva et al. 2001). To this end, a fusion operator (F ‘ð Þ
k ) is

introduced within each FNC
‘ð Þ

k to aggregate the outputs of the parent classifiers. The

decision output of the fuser is attached to the descendant FNC. Additionally, the

fusion algorithm serves as a means to discriminate between those patterns that are

currently well classified by the parent classifiers, and those that need further

investigation by the FPD unit of the offspring classifier. This procedure gives rise to

a data splitting mechanism that offers efficient handling of the data flow and

reduction of the computational cost.

The inclusion of the fuser F ‘ð Þ
k gives rise to a composite decision support vector,

denoted as D
‘ð Þ

k , at the output of FNC
‘ð Þ

k , which is formulated as described in the

sequel. Derivation of D
‘ð Þ

k proceeds along the following steps:

A.1 Decision fusion. For a given pattern x[q], the decision outputs of the antecedent

classifiers D
‘{1ð Þ

i and D
‘{1ð Þ

j are fused as follows:

DF
‘ð Þ

k x q½ �ð Þ~F ‘ð Þ
k D

‘{1ð Þ
i x q½ �ð Þ,D ‘{1ð Þ

j x q½ �ð Þ
n o

ð15Þ

where F denotes a fusion operator. The resulting decision output, DF
‘ð Þ

k , includes

the certainty grades given by the fuser for all classes

DF
‘ð Þ

k x q½ �ð Þ~ df
‘ð Þ

k,1 x q½ �ð Þ, . . . ,df
‘ð Þ

k,M x q½ �ð Þ
h i

ð16Þ

There are several types of fusion operators reported in the literature. In general, they

are divided into two major categories, the class-conscious and the class-indifferent

fusion methods, depending on the way they handle the decision information carried

out by the combined classifiers. In this paper, four different types of fusion operators

are used, namely min, weighted average, fuzzy integral, and decision templates

Figure 8. Neuron structure of nodes in higher layers ‘§2ð Þ.
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(Kuncheva et al. 2001). For instance, the min operator is a simple and fairly

conservative aggregation operator, belonging to the class-conscious methods:

df
‘ð Þ

k,v ~min dn
‘ð Þ

i,v ,dn
‘ð Þ

j,v

n o
, v~1, . . . ,M ð17Þ

A.2 Data splitting (DS). The decision profile obtained by the fuser, DF
‘ð Þ

k , provides

the degree of support that a pattern belongs in each class by combining the outputs

of the parent classifiers FNC
‘{1ð Þ

i and FNC
‘{1ð Þ

j . To ascertain the classification level

of the patterns, the values df
2ð Þ

k,r are compared to a user’s defined threshold

df
2ð Þ

k,r §q, q[ 0:5,1½ �, where q represents the degree of confidence (i.e. q50.8) that a

pattern belongs to a certain class, x q½ �[Cr. The above condition is called here the

maximum classification level criterion (MCLC). Based on the MCLC criterion, the

entire data set DN is divided into two disjunctive subsets J
‘ð Þ

k and V
‘ð Þ

k , so that

DN~J
‘ð Þ

k |V
‘ð Þ

k . The subset J
‘ð Þ

k includes those patterns that fulfil the MCLC

criterion, that is they are currently well classified with a high grade of certainty.

Furthermore, the subset V
‘ð Þ

k contains the rest of the data patterns that are either

misclassified by the fuser or correctly classified with a low degree of support.

A.3 Handling of patterns in J
‘ð Þ

k . In this case, the fuser produces a high grade of

certainties for a class, implying that both parent classifiers agree strongly on the

same class. Therefore, well-classified patterns contained in J
‘ð Þ

k are handled by the

fuser, that is their decision outputs are derived by DF
‘ð Þ

k x q½ �ð Þ,Vx q½ �[J
‘ð Þ

k

A.4 Handling of patterns in V
‘ð Þ

k . For these patterns, the fuser produces low certainty

grades for all classes (below confidence threshold q), which means that either a

conflict occurs between the parent FNCs or patterns are correctly classified by the

parent classifiers with a weak degree of support. Hence, ambiguous patterns

included in V
‘ð Þ

k are fed to FPD
‘ð Þ

k for further processing. They are subject to an

additional feature transformation to improve their discrimination.

As two parent classifiers are combined at a time, the input vector of the FPD
‘ð Þ

k is

a four-dimensional vector:

x
‘ð Þ

k ~ x
‘ð Þ

k,1

� �T

, x
‘ð Þ

k,2

� �T
� �T

~ x
‘{1ð Þ

i

� �T

, x
‘{1ð Þ

j

� �T
� �T

[<4 ð18Þ

Assume that the antecedent classifiers FNC
‘{1ð Þ

i and FNC
‘{1ð Þ

j assign a pattern

x
‘{1ð Þ

k [V
‘{1ð Þ

k to the classes Ci* and Cj*, respectively. We check whether patterns

x
‘{1ð Þ

i and x
‘{1ð Þ

j , which are associated with x
‘ð Þ

k , are included in the sets J
‘{1ð Þ

i ,

J
‘{1ð Þ

j or the sets V
‘{1ð Þ

i , V
‘{1ð Þ

j , respectively. The input parts x
‘ð Þ

k,1,x
‘ð Þ

k,2[<2 are

defined by

IF x
‘{1ð Þ

i [V
‘{1ð Þ

i THEN x
‘ð Þ

k,1~y
‘{1ð Þ

i

ELSE IF x
‘{1ð Þ

i [J
‘{1ð Þ

i THEN x
‘ð Þ

k,1~y
Ci�ð Þ

d

IF x
‘{1ð Þ

j [V
‘{1ð Þ

j THEN x
‘ð Þ

k,2~y
‘{1ð Þ

j

ELSE IF x
‘{1ð Þ

j [J
‘{1ð Þ

j THEN x
‘ð Þ

k,2~y
Cj�ð Þ

d
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In the output space of FPD
‘ð Þ

k , the classes are ordered following the same class

targeting scheme as the one defined for the FNCs at the first layer. Construction of

the FPD
‘ð Þ

k is performed following the steps described in section 3.2. Having

obtained the locations of the new transformed features y
‘ð Þ

k (FPD
‘ð Þ

k outputs) of the

patterns in V
‘ð Þ

k , decision making is then applied by means of the corresponding

DMFU
‘ð Þ

k module, to obtain the soft decision output vector:

DN
‘ð Þ

k x q½ �ð Þ~DMFU
‘ð Þ

k y
‘ð Þ

k q½ �
n o

~ dn
‘ð Þ

k,1 xð Þ,dn
‘ð Þ

k,2 xð Þ, . . . ,dn
‘ð Þ

k,M xð Þ
h iT

ð19Þ

where dn
‘ð Þ

k,j[ 0,1½ � denotes the degree of support for a pattern belonging in class Cj.

A.5 Overall decision output. The overall decision profile of FNC
‘ð Þ

k is formulated as a

composite of two parts:

D
‘ð Þ

k ~DF
‘ð Þ

k +DN
‘ð Þ

k ~ d
‘ð Þ

k,1,d
‘ð Þ

k,2, . . . ,d
‘ð Þ

k,M

h iT

ð20Þ

where the DF
‘ð Þ

k and DN
‘ð Þ

k come from the fuser and the modules pair

FPD
‘ð Þ

k ,DMFU
‘ð Þ

k

n o
, respectively, functioning on the J

‘ð Þ
k and V

‘ð Þ
k data subsets:

D
‘ð Þ

k x q½ �ð Þ~DF
‘ð Þ

k x q½ �ð Þ, Vx q½ �[J
‘ð Þ

k and D
‘ð Þ

k x q½ �ð Þ~DN
‘ð Þ

k x q½ �ð Þ, Vx q½ �[V
‘ð Þ

k .

When a hard decision is to be made, the patterns are assigned to a class Cr

fulfilling the maximum argument principle: D
‘ð Þ

k x q½ �ð Þ~Cr[d
‘ð Þ

k,Cr
~ max

j~1,...,M
d
‘ð Þ

k,j

n o
.

The fuzzy-to-crisp transformation operates either on df
‘ð Þ

k,j or dn
‘ð Þ

k,j , depending on

whether a pattern belongs to J
‘ð Þ

k or V
‘ð Þ

k . It should be noted that especially for the

FNCs at layer 2, the decision fusion in equation (15) acts upon the DN
‘{1ð Þ

i and

DN
‘{1ð Þ

j provided by the DMFUs of the parent classifiers of layer 1.

The decision mechanism described above exhibits some remarkable merits

discussed in the following: (i) first, the fuser exploits the decision supports given by

the antecedent classifiers. Patterns that are well classified from their parents have a

large support in the fuser’s output, resulting in a confident decision for the class they

belong to. Provided that a certain confidence level is exceeded, they are excluded

from the fuzzy model construction. (ii) Data splitting leads to significant

computational savings, a convenient advantage, especially when difficult problems

are examined with large data sets and large number of classes. (iii) Exclusion of well-

classified data allows the FPDs to focus on those patterns where adequate

classification accuracy is not yet achieved. (iv) The antecedent classifiers in each

layer are developed following different paths, starting from the original feature

space and proceeding through the layered structure of the SONeFMUC. Hence,

among the family of feature subspaces investigated, an optimal path is decided on,

leading to enhanced classification rates.

3.4 Structure learning

The proposed model is generated in a self-organizing manner, by means of the

GMDH algorithm (Ivakhnenko 1968), described below. In particular, the structure

of the SONeFMUC is not predetermined in advance. Starting from the original

system inputs (features), new layers are developed sequentially, until a final topology

is obtained, satisfying the performance requirements.
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The structure learning of the SONeFMUC proceeds along the following steps:

Step 1. Formulate data sets: The data set DN is divided into a training data set Dtrn, a

validation data set Dval and a testing data set Dchk, comprising ntrn, nval and nchk,

respectively, with ntrn + nval + nchk5N. The training and validation data sets are

used for determining the structure of the individual FNCs, at each layer, while the
checking data are used for evaluating the SONeFMUC model obtained at the end of

structure learning.

Step 2. Select the model parameters: In this step, we choose the structural parameter

values involved in the FPDs, the DMFUs and the fusion mechanism. (i) Select the

number p of FPD inputs. For the FNC
1ð Þ

k at layer 1, p takes values in the range

p[ 2,4½ �, with the inputs chosen among the set of original features {x1, x2,…, xm}. All

FNC
‘ð Þ

k at higher layers, ‘§2, are developed by combining two parent FNCs of the
previous layer (p54). (ii) Select the number of membership functions Ki, i51,…,r,

and Li, i51, 2, used to partition the premise space of FPD
‘ð Þ

k and DMFU
‘ð Þ

k ,

respectively. Choice of Li depends upon the number of classes of the problem at

hand. (iii) Select the type of rule consequent functions (polynomial or crisp). (iv)

Select the fusion operator F ‘ð Þ
k among the three class-conscious aggregation rules

(min, weighted average, and fuzzy integral) and the class-indifferent alternative

(decision templates). (v) Select confidence threshold q[ 0:5,0:8½ � that controls the

data splitting within each FNC. The greater the value of q, the smaller the number
of patterns whose decision is derived by the fuser F ‘ð Þ

k DF
‘ð Þ

k

� �
, and the greater the

data portion being handled by the pair of modules FPD
‘ð Þ

k ,DMFU
‘ð Þ

k

n o
DN

‘ð Þ
k

� �
.

Once specific values of the above parameters are chosen, they are applied uniformly

for all FNCs during the structure learning of the SONeFMUC model.

Step 3. Consider the so-called best set, BS ‘{1ð Þ~ FNC
‘{1ð Þ

i ,i~1, . . . ,W
n o

, formed

at layer (‘{1). It comprises a number of W individuals that represent the most

qualifying FNCs retained at that layer. The outputs of these individuals form the
candidate input set used for the construction of the individuals FNC

‘ð Þ
k at layer ‘. In

particular, the best set BS(0) includes the m original feature components: BS(0)5{x1,

x2,…, xm}. As for the BS ‘ð Þ at the succeeding layers, it is determined as described in

step 7.

Step 4. Create the population P ‘ð Þ of candidate FNCs at layer ‘: The population P ‘ð Þ is
formulated by recombining the individuals in BS ‘{1ð Þ obtained at layer (‘{1). The

new individuals to be generated are obtained by combining parent FNCs from

BS ‘{1ð Þ. Considering all possible combinations WC2, we conclude with a total

number of Q ‘ð Þ~
W

2

� 	
~W != W{2ð Þ!2! new FNCs that form the population at the

current layer: P ‘ð Þ~ FNC
‘ð Þ

k ,‘~1, . . . ,Q ‘ð Þ
n o

.

Step 5. Construct the FNC
‘ð Þ

k models of P ‘ð Þ: In this step we determine the structure of

the FNC
‘ð Þ

k , ‘~1, . . . ,Q ‘ð Þ, by combining its parent modules FNC
‘{1ð Þ

i and

FNC
‘{1ð Þ

j . Combining the parents FNCs means that we make use of both types

of outputs being offered, that is the continuous outputs y
‘{1ð Þ

i and y
‘{1ð Þ

j

(transformed feature values) and the soft decision vectors D
‘{1ð Þ

i and D
‘{1ð Þ

j .

Step 6. Evaluate the FNCs of P ‘ð Þ: Each FNC
‘ð Þ

k is evaluated to assess its

approximation and predictive capabilities. For the training data set, calculate the
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following error measure:

Etrn,k~
1

ntrn

X2

j~1

Xntrn

q~1

yC
d,j q½ �{y

‘ð Þ
k,j

n o2

z
Xntrn

q~1

Cd q½ �=Cj q½ �

 �

, k~1, . . . ,Q ‘ð Þ ð21Þ

The first term in equation (29) is the mean squared error function, computing the

proximity of the transformed outputs y
‘ð Þ

k,j to the respective class targets. The second

term determines the total number of misclassifications occurring over the training

data set. Assuming that two individuals produce the same number of misclassifica-

tions, the one exhibiting the lower mean squared error will be selected, thus

providing better placement of the transformed features. The Eval,k associated with

the validation data set, Dval, is calculated in a similar way. The FNCs are evaluated

using a weighted average metric: Ek5(12a) Etrn,k + a Eval,k, where a[ 0,1½ � is a weight

specified by the user controlling the balance between Etrn,k and Eval,k.

Step 7. Formulate the best set BS ‘ð Þ at layer ‘: The values of Ek are placed in

ascending order. The first individual corresponds to the most qualifying FNC,

denoted as FNC ‘ð Þ
� , having the lowest classification error. A collection of W FNCs

are retained that exhibit the lower classification errors. These FNCs form the best

set BS ‘ð Þ at the current layer, including the highly qualified individuals of the

population, P ‘ð Þ. The outputs of the FNCs contained in BS ‘ð Þ serve as candidate

inputs for the next layer while the remaining ones are discarded.

Step 8. Check for the termination criterion: Assume that the best FNC in BS ‘ð Þ,
FNC ‘ð Þ

� , exhibits a classification score denoted by E
‘ð Þ
� . The best node FNC ‘ð Þ

� is

temporarily regarded as the output of the SONeFMUC model. The model

expansion stops when either ‘ reaches a maximum number of layers, Mmax, or the

best performance attained at the current layer exceeds the one obtained at the

previous layer: E
‘ð Þ
� §E

‘{1ð Þ
� . Upon termination of the evolution, proceed to step 10.

Step 9. Determine the inputs to the next layer: Assuming that E
‘ð Þ
� vE

‘{1ð Þ
� and the

maximum number of layers is not yet reached, the SONeFMUC model is allowed to

expand by including a new layer. The retained individuals FNC
‘ð Þ

k in BS ‘ð Þ are

recombined again to generate the FNCs at layer (‘z1). Accordingly, their outputs

y
‘ð Þ

k and D
‘ð Þ

k are submitted as inputs to the descendant FNCs at the next layer. To

this end, go to step 4 for the generation of the new population.

Step 10. Recover the network’s architecture: Once the stopping criteria are satisfied

for some M(Mmax, the node classifier with the best performance, FNC Mð Þ
� , is

considered as the ending node of the SONeFMUC, providing the decision outputs

of the model. The remaining FNCs at the output layer are discarded. In the

following, we perform a reverse flow tracing through the network’s structure,

moving from the output to the input layer. All nodes at the intermediate layers (the

input layer included) having no contribution to the FNC selected at the final layer

are removed from the network. As regards the model’s inputs, among the original

features {x1,…,xm}, a subset of significant features is retained whereas the rest are

discarded.

Figure 9 demonstrates the network expansion by the GMDH method. The broken

lines indicate the recovered structure of the SONeFMUC. The resulting model is a

three-layered network, with a total number of six FNCs. Four features are selected

by GMDH, x1, x2, x3 and x5, from a total of m original features.
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The SONeFMUC classifier exhibits some remarkable attributes, distinguishing it
from other classification model of the literature: (1) the SONeFMUC is a self-

organizing multilayered network whose structure is developed sequentially in a

layer-by-layer basis, following a systematic expansion procedure, the GMDH

method. Depending on the complexity of the particular classification problem, the

network depth is properly controlled so that the performance of the model obtained

fulfils the design requirements. (2) The GMDH methodology inherently implements

the so-called feature selection task. In the final model recovered at the end of

structure learning, only the most important features having a significant
contribution to the classification mapping are retained, while the unnecessary ones

are discarded. In that respect, the GMDH performs two tasks simultaneously,

namely model building and feature selection. (3) The FPD modules of the FNCs

perform successive feature transformations through the layers. Starting from the

input layer, the original features are repeatedly transformed between the

intermediate layer spaces. For higher layers, each new FPD improves the class

discrimination, allowing the corresponding DMFUs to draw more accurate

classification assignments.

4. Experimental results

4.1 Application of the SONeFMUC to the study area

The SONeFMUC network was applied to a multispectral IKONOS image using the

set of training samples recognized in the field. Owing to the large number of classes

and the spectral overlapping of the feature signatures, we were confronted with

misclassification problems, especially in classes that represent vegetation cover.
Therefore, based on the pan-sharpened image and after careful photointerpretation,

the image was segmented into two zones: the wetland zone, which includes the lake

Figure 9. Example of the structure learning process by means of the GMDH algorithm.
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and its surrounding wetland vegetation, and the agricultural zone. In the wetland

zone five classes were recognized: water bodies, phragmites, tamarix, wet meadows,

and trees. In the agricultural zone we considered eight classes, six referring to

different crop types (maize, alfalfa, cereals, orchards, vegetables, and fallow) and

two referring to other land cover types (urban areas and shrubs). The SONeFMUC

classifier was applied to both of these zones.

As the structure learning process uses a validation data set to obtain appropriate

networks with higher generalization capabilities, the training set was split further in

training and validation using 60% and 40% of the original training set, respectively.

The MLC classifier used the original training set for the training stage. The testing

set was the same for both methods. To initiate the structure learning of the

SONeFMUC classifier for each zone, a number of structural parameters have to be

decided on: the number of fuzzy sets in each input, the form of the rules and the type

of fuser. This task is accomplished by the following thee-step procedure. (1) In the

first stage we considered the min fusion operator, and developed through GMDH

different network combinations using three or five fuzzy sets along each FPD input

and crisp or linear rules. (2) The best network based on the checking data

performance was selected as the most appropriate. (3) The remaining three types of

fusion (the weighted average, the fuzzy integral, and the decision templates) were

used in the network decided in step 2. The network architecture exhibiting the

highest classification accuracy on the checking data was selected as the final model.

In all simulations, the GLCMs were calculated using a window size of 767,

direction h50u and distance d51 for the wetland zone, and a window size of 23623,

direction h545u and distance d51 for the agricultural zone. The performance of the

model obtained was evaluated in terms of four parameters: the confusion error

matrix, the overall accuracy, the Khat statistic, and the Z-score with 95% confidence

level (Congalton and Green 1999).

4.1.1 Application of the SONeFMUC to the wetland zone. Following the above

three-step procedure, a network was selected using three fuzzy sets for the FPD

inputs, TSK type rules, and the fuzzy integral as the fusion scheme. The resulting

network was a five-layered structure with an overall classification accuracy of 89.5%

on the testing data. Table 1 shows the confusion matrix along with the producer’s

and user’s accuracy as a percentage (PA% and UA%, respectively). Additionally, the

statistical parameters Khat and Z-score were calculated, and used to assess the

quality of the classifier. The SONeFMUC model shows strong agreement between

Table 1. Confusion matrix obtained by application of the SONeFMUC to the testing data set
of the wetland zone.

Wetland map classification

PA (%) UA (%)Phragmites Tamarix
Wet

meadows Trees
Water
bodies

Phragmites 102 12 7 3 0 90.27 82.26
Tamarix 7 17 2 3 0 54.84 58.62
Wet meadows 4 1 198 0 0 95.65 97.54
Trees 0 1 0 3 0 33.33 75.00
Water bodies 0 0 0 0 21 100.0 100.0
Reference 113 31 207 9 21

Overall accuracy589.5%, Khat50.83, Z-score533.14
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the remotely sensed classification and the reference data, as shown by the high value

of the Khat parameter, which is greater than 0.8 (Congalton and Green 1999). As

the Z-score of 33.14 was higher than the standard normal critical value Zc51.96, the

classification provided by the SONeFMUC was significantly better than random, at

a confidence level of 95%.

As depicted in table 1, the SONeFMUC classified the classes of phragmites, wet

meadows and water bodies better than the other classes. The high accuracy in these

three classes is attributed to the small spectral overlapping and within-class variance.

However, poor classification results were achieved for the tamarix and trees classes.

Tamarix was strongly confused with phragmites because their spectral signatures are

very similar. The trees class was confused with tamarix and phragmites; these classes

represent vegetation cover with similar spectral characteristics.

4.1.2 Application of the SONeFMUC to the agricultural zone. The SONeFMUC

model selected was a six-layer network, using five fuzzy sets for each FPD input,

crisp type rules, and the min fuser. The model provided an overall accuracy of

74.21% on the testing data set. Table 2 shows the confusion matrix for the

agricultural zone, including the corresponding statistical parameters.

The SONeFMUC model exhibited moderate agreement between the remotely

sensed classification and the reference data as the Khat value falls in the range 0.4–

0.8. As expected, the value of the Z-score is large enough to indicate that the method

is significantly better than random selection with a 95% confidence level. The overall

classification accuracy was found to be smaller than that attained in the wetland

zone, possibly because of the larger number of classes compared to the wetland

zone. Nevertheless, the SONeFMUC exhibits an average producer’s accuracy of

82.6% on three major classes (maize, alfalfa and cereals), implying that they are

classified more accurately than the others, although the dominant classes are

overestimated, as shown from the user’s accuracy percentages. On the contrary,

orchards, vegetables and shrubs were underestimated with a poor producer’s

accuracy. The explanation for this is that these classes contain different subclasses;

for instance, vegetables may include tomatoes, watermelon or eggplants, a situation

recognized with fieldwork, thus leading to a large number of misclassifications. A

mosaic of land cover map of both zones is illustrated in figure 10(a), which depicts

the results of the SONeFMUC.

Table 2. Confusion matrix obtained by application of the SONeFMUC to the testing data set
of the agricultural zone.

Agriculture map classification
PA
(%)

UA
(%)Alfalfa Cereals Maize Orchards Vegetables Fallow Shrubs Urban

Alfalfa 149 8 23 3 12 3 2 0 74.13 74.50
Cereals 18 190 2 5 4 23 14 2 90.48 73.64
Maize 21 1 147 8 11 0 1 0 83.05 77.78
Orchards 6 1 2 21 2 1 1 0 50.00 61.76
Vegetables 5 1 3 2 15 0 0 0 32.61 57.69
Fallow 2 8 0 1 2 33 2 2 55.00 66.00
Shrubs 0 1 0 2 0 0 7 0 25.93 70.00
Urban 0 0 0 0 0 0 0 28 87.50 100.0
Reference 201 210 177 42 46 60 27 32

Overall accuracy574.21%, Khat50.67, Z-score534.84
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4.2 Comparison with the MLC

To validate the classification results of the SONeFMUC algorithm, the IKONOS

image was classified using the MLC, a traditional spectral probabilistic ‘hard’

classifier. As both the SONeFMUC and the MLC were applied on the same testing

set, a McNemar test with continuity correction based on a x2 distribution was used

to compare the performance of the two algorithms, as suggested by Foody (2004).

4.2.1 MLC classification of the wetland zone. Table 3 presents the confusion

matrix for the MLC on the testing data. A high overall performance of 84.51% was

obtained, which was 5% lower than that of the SONeFMUC. The Khat statistic was

Figure 10. Mosaic of IKONOS land cover classification of wetland and agricultural zone
using (a) the SONeFMUC and (b) the MLC. The legend is presented in (c).
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found to be 0.74, suggesting a moderate agreement between the remotely sensed

classification and the reference data, as opposed to the SONeFMUC, where the

agreement was very strong. Additionally, the Z-score was calculated as 25.48, which

is significantly greater than Zc, showing that the classification was better than

random.

The MLC exhibits a good performance on classifying wet meadows and water.

However, compared to the SONeFMUC, the phragmites classification gave poor

results; most omission errors were found with tamarix, although phragmites cover a

large area of the wetland. A low level of accuracy was also achieved in trees and

tamarix as in the SONeFMUC algorithm, which shows the inefficiency of either of

these two algorithms in classifying these classes.

4.2.2 MLC classification of the agricultural zone. The MLC was also applied in the

agricultural zone, with the error confusion matrix shown in table 4. A moderate

overall accuracy of 71.7% was obtained, slightly lower than that of SONeFMUC

(approximately 74%). The Khat value was 0.65 and Z-score 33.69, indicating a fair

agreement but suggesting that the classification result is not random.

Based on the statistical parameters, the MLC algorithm performed similarly to

the SONeFMUC model in the agricultural zone. However, useful information about

the performance of the two classification methods could be derived by further

Table 4. Confusion matrix obtained by the application of MLC to the testing data set of the
agricultural zone.

Agriculture map classification

Urban
PA
(%)

UA
(%)Alfalfa Cereals Maize Orchards Vegetables FallowShrubs

Alfalfa 119 7 5 0 4 0 0 0 59.20 88.15
Cereals 25 162 3 6 4 19 4 0 77.14 72.65
Maize 27 0 144 2 5 0 0 0 81.36 80.90
Orchards 12 7 15 34 6 3 1 0 80.95 43.59
Vegetables 18 3 10 0 22 0 0 0 47.83 41.51
Fallow 0 23 0 0 5 38 3 0 63.33 55.07
Shrubs 0 3 0 0 0 0 19 0 70.37 86.36
Urban 0 5 0 0 0 0 0 32 100.0 86.49
Reference 201 210 177 42 46 60 27 32

Overall accuracy571.7%, Khat50.65, Z-score533.69

Table 3. Confusion matrix obtained by application of the MLC to the testing data set of the
wetland zone.

Wetland map classification

PA (%) UA (%)Phragmites Tamarix
Wet

meadows Trees
Water
bodies

Phragmites 87 10 9 7 0 76.99 76.99
Tamarix 19 15 1 0 0 48.39 42.86
Wet meadows 7 6 197 0 0 95.17 93.81
Trees 0 0 0 2 0 22.22 100.0
Water bodies 0 0 0 0 21 100.0 100.0
Reference 113 31 207 9 21

Overall accuracy584.51%, Khat50.74, Z-score525.48
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analysing the error confusion matrix. For example, in the first three classes (maize,

cereals and alfalfa), the dominant classes in the zone, the mean producer’s accuracy
of the MLC is lower (72.6%) than the SONeFMUC’s (82.6%), indicating an

underestimation by the MLC in these classes. However, fallow is classified better in

the MLC than in the SONeFMUC, although this class is confused in both classifiers

with cereals. This is because they are spectrally similar as the satellite image was

acquired in August when cereals are harvested and fallows represent low vegetation

cover. A mosaic of land cover maps of both zones is illustrated in figure 10(b),

showing the results obtained by the MLC.

4.3 Discussion of the results

The classification algorithms SONeFMUC and MLC were applied to the wetland

and agricultural zones of the satellite image, providing differing results. In the

wetland zone, the SONeFMUC was found more suitable because the overall

accuracy was higher and Khat showed a higher reliability of the results. McNemar’s

test on the two methods also demonstrated that their performance was significantly

different in the wetland zone, x2
1,0:95w3:84 (see table 5).

The results followed a similar trend in the agricultural zone, where the

SONeFMUC offered a higher overall accuracy and higher Khat. However, there

was insufficient statistical evidence that SONeFMUC performed significantly better.

This may be due to the larger number of classes in the agricultural zone compared to

the wetland zone (eight and five, respectively), and the similar spectral
characteristics of the crops. However, as regards the dominant classes, the

SONeFMUC was found to be more suitable than the MLC, which had

overestimated them.

Useful information was derived using a visual assessment of land cover maps

produced by both classifiers. Figure 11 illustrates a region of the thematic map in the

agricultural zone, showing the superior performance of the suggested approach. The

SONeFMUC yields fewer pixel misclassifications, thus producing more homo-

geneous fields. Moreover, the MLC exhibits a large confusion between alfalfa and

maize (blue and red colours, respectively) in many fields, a situation not confronted

in the SONeFMUC.

A similar visual assessment was carried out in the wetland zone, as illustrated in

figure 12. The overestimation of tamarix compared with phragmites by the MLC

can be observed, a result also appearing in the confusion matrix shown in table 3.
The SONeFMUC classified the stretch phragmites uniformly, which is the correct

land cover type. Additionally, at the lake’s shore where the depth of the water is low,

a large number of pixels were classified errroneously by the MLC as phragmites and

Table 5. Comparison of the classification performance of the SONeFMUC with the MLC in
the wetland and agricultural zones, using statistical parameters and McNemar’s test.

Wetland Agricultural

SONeFMUC MLC SONeFMUC MLC

Overall accuracy (%) 89.5 84.51 74.21 71.7
Khat 0.83 0.74 0.67 0.65
Z-score 33.14* 25.48* 34.84* 33.69*
x2 7.84* 0.82*

*95% confidence level.
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wet meadows; these pixels, however, belong to water, as correctly labelled by the

SONeFMUC.

By using the structure learning algorithm (GMDH), the proposed method

accomplished the feature selection task. The network generated for the wetland zone

used only eight out of 26 original features as inputs. The subset of significant

features selected by GMDH includes: bands 1–3, the ASM co-occurrence feature

from the third band, greenness and brightness from the tasseled cap features, and

intensity and hue from the IHS features. In the agricultural zone, the resulting

network used only 12 out of the 26 initial features. These features consist of the four

bands, correlation from the first band, homogeneity from the third band, ASM from

the fourth band, the three tasseled cap features, and intensity and hue from the IHS

features. On the contrary, the MLC does not provide this capability; therefore,

Figure 11. A subset of the land cover map produced (a) the SONeFMUC and (b) the MLC
in the agricultural zone east of the wetland. The legend is presented in (c).

Figure 12. A subset of the land cover map produced with (a) the SONeFMUC and (b) the
MLC in the wetland zone south of the lake. The legend is presented in (c).
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feature selection is based on the designer’s experience or on a time-consuming trial-

and-error process.

5. Conclusions

In this paper, the SONeFMUC was proposed and applied to land cover

classification of a VHR image in a protected area of high ecological interest. To

improve classification accuracy, the image was divided into two zones: the wetland

zone, where land cover corresponded to five habitat classes, and the agriculture zone

with eight crop classes. The performance of the SONeFMUC was compared to that

of the MLC.

A high classification accuracy of 89.5% was obtained by the SONeFMUC in the

wetland zone (Khat50.83). The suggested classifier was able to discriminate

between the dominant habitat classes: phragmites, wet meadows and water bodies.

In the agricultural zone, the performance of the SONeFMUC was lower, showing

an overall accuracy of 74.21% (Khat50.67). The basic reason for this was the large

spectral overlapping between the crop classes, together with the larger number of

classes as compared to the wetland zone. The dominant classes of the agricultural

zone (alfalfa, maize and cereals) were distinguished to a satisfactory degree, as the

average producer’s accuracy was 82.6%. Finally, it should be noted that the

proposed method was able to select the appropriate input features for each zone,

leading to a higher classification accuracy.

Performance comparisons with the MLC verified the efficiency of the proposed

SONeFMUC. In both zones, the SONeFMUC achieved a higher overall accuracy

and higher Khat value than the MLC. In particular, in the wetland zone the overall

accuracy of the MLC was 5% lower and the Khat revealed a poorer classification

quality. In addition, McNemar’s test between the two methods proved that their

performance was significantly different. In the agricultural zone, the quality

statistics of the MLC was lower but comparable to the SONeFMUC. Nevertheless,

the MLC underestimated the dominant crops, contrary to the SONeFMUC, making

the use of the suggested method more appropriate. Apart from the initial bands,

more informative features are extracted from the multispectral image, namely

textural and spectral features. Future work will explore the capabilities of our

network using wavelet transformation as an additional input.
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