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Abstract: Utilization of satellite data by means of remote
sensing practices creates a wider window of opportunities
to conduct robust outcomes Landsat OLI-8 data acquired
over the peninsula of Halkidiki in Greece for the summer
period of 2013, were analyzed to determine their utility
to classify natural resources categories based on the de-
termination of spectral bands combination. Consequently,
spectral bands combination canbeused to classify various
categories based on their higher overall accuracy assess-
ment. Spectral information contained in each of the uti-
lized channels of LandsatOLI-8, statistics defining 12 cover
type classes of interest were calculated and used as a ba-
sis for classification of the designated study area. Spectral
bands combinations (4-5-6/ 3-4-5/ 3-4-5-6/ 4-5-6-7) fulfill
the required accuracy for forest purpose as they conducted
overall accuracies rangingbetween 7.85%and96.29%.The
spectral band combination 3-4-5-6-7 conducted the high-
est overall accuracy (98.15%). The poorest results were ob-
tained by the analysis of spectral bands combination 4-6
(68.52%). Single spectral band 6 conducted the best over-
all results; however, spectral bands 5 and 6 seemed to be
the most useful spectral bands combination for each cate-
gory.

Keywords:Accuracy Assessment, Spectral band Combina-
tion, Image Classification, Mediterranean Forest, Remote
Sensing Data

1 Introduction
The general term of image processing is to extract infor-
mation either with no interference with the observed data
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(image preprocessing) and/or with adequate interference
to improve the results concerning the observed phenom-
ena [1, 2]. The most common practice in image processing
is to recognize a pattern. Tou and Gonzalez [3] has defined
pattern recognition as the categorization of input data into
identifiable classes, via the extraction of significant fea-
tures or attributes of the data from background irrelevant
details [4, 5].

The first step in the analysis sequence involves the
selection of data samples from which the computer may
drive the necessary statistical parameters for the “train-
ing” of the classification algorithm [6, 7]. The training sam-
ples are based on “ground truth” information. This means
that the used categories are defined based on the separa-
bility index [8, 9].

There are two major approaches, the unsupervised
and the supervisedmodel. The unsupervisedmodel is use-
ful when the spectral info is not identified [10]. An impor-
tant criterion for clustering is the minimization of the sum
of square error for determining the spectral class composi-
tion of the data, prior to detailed analysis by the method
of supervised classification [2, 11]. Supervised classifica-
tion assumes that each spectral class can be described by
the probability distribution in themultispectral space; this
will be a multivariate distribution with many variables as
dimensions of space [12, 13] .

Classification costs increase by the number of features
which are used to describe pixel vectors in a multispectral
space e.g. “with the number of spectral bands associated
with a pixel” [14, 15]. Each class has a statistical spread
associated with it, through the data point in each spec-
tral band. As such probability distributions, can overlap,
to greater or lesser extent; the class separability becomes
a function of both the separation of themeans and the sta-
tistical distribution of data points, within each class, for
each dimension [8, 16].

Each of OLI-8 spectral bands can potentially con-
tribute to the multispectral land cover classification. Al-
though, there is a redundancy of information due to high
inter-spectral band correlation [17]. Two basic approaches
are used to identify subsets of spectral bands,whichmight
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be suitable classification of the multispectral data. These
are separability analysis and evaluationof eigenvector and
eigenvalue data derived from class statistics [18, 19]. There
are several measures of separability available to predict
best spectral bands combination for classification which
are based on measurements of the statistical distance be-
tween spectral classes of interest [20–22].

According to Gausman et al. [23], the wavelength of
0.68, 0.85, 1.65 and 2.20 µm is useful for monitoring veg-
etation. Lathrop et al. [24] reported that the most informa-
tive spectral intervals for monitoring for natural materi-
als were 0.54-0.56, 0.66-0.68 and 0.78-0.82 µm. Many re-
searchers are trying to evaluate the best single or combi-
nation of spectral bands for displaying, mapping and clas-
sifying forest lands [25].

Murtha and Watson [26] stated that a combination
of spectral bands, primarily TM 5 and 6 are required for
the interpretation and mapping forest clear cuts. Cogge-
shall and Hoffer [27] verified that at least one spectral
band in the near infrared or middle infrared is necessary
to accurately discriminate broadleaf and conifers forests.
Spanner et al. [4] using principal component analysis
found that the four optimal spectral bands of the The-
matic Mapper Simulator (TMS) data for forest vegetation
analysis, over a Northern Idaho study site, were the near
infrared (TMS4), thermal infrared (TMS6), mid-infrared
(TMS5) and red (TMS3). Latty and Hoffer [1], using aver-
age transformed divergence, found the highest separabil-
ity between South Carolina forest classes in four spectral
bands subset consisting of TM 1, −3, −4 and 5. They noted
that such waveband selection results were “highly data
and application dependent”. Duda et al. [28] pointed out
that beyond a certain point the inclusion of additional fea-
tures leads to worse rather than better performance. Nel-
son et al. [1] using stepwise discrimination analysis of TMS
data, appeared to provide forest classification accuracies
that are not significantly different from similar scholarly
work [29, 30].

The main purpose of the study is to increase the
knowledge about the use of satellite data in vegetation
ecosystems. More specifically the objective is to determine
the spectral bands combination that gives the highest
overall accuracy that can be used for better classification
of various categories of typical Mediterranean land cover.

2 Materials and Methods

2.1 Study Area

The study area is the peninsula Sithonia of the prefecture
of Halkidiki (Figure 1). Study area selection was based on
the fact that the designated study area belongs to a typi-
cal Mediterranean ecosystem. Therefore, most of the ma-
jor forest cover types found in Greece are presented in the
area [31]. Moreover, there are available ancillary data giv-
ing information about the vegetation, soil, and topogra-
phy. Sithonia is situated on the middle of the three penin-
sulas of Halkidiki and occupies a place with longitude be-
tween 23∘ 36’ up to 24∘ 00’ E and latitude between 39∘ 56’
up to 40∘ 14’ N. The peninsula, with 43 km in length and 6
km inwidth in the northern part and 18 km in the center, is
considered as a continuation of the mountain Holomonta.
Its acreage is about 450 km2, half of which are covered
by forests of Aleppo pine (Pinus halepensis), which settles
its optimum development in Sithonia. The elevation is up
to 823 m (hill Polielaios). The relief is gently looping, but
there are places with an inclination of 50-60%. The penin-
sula has only small numerouswater streamswith seasonal
activity, which create gully erosion phenomena. The pres-
sure of the biotic factors of the area has affected the soil
of Sithonia. The main rocks found are granites, metamor-
phic rocks of gneiss, sandstones, and alluvial rocks, semi-
metamorphic rocks of phyllites and calc-schists andfinally
deposits of alluvial and sand-alluvial rocks [31, 32]. On the
east side of Sithonia, where silicate rocks predominate,
and the soils are acidic, shallow, with numerous rocks and
littler fertility. On these soils, the stand of Aleppo pine of
Stone pine (Pinus pinea) and Black pine (Pinus nigra) have
been developed [33]. The understory is composed of acid-
friendly bushes of Ericaceae (tree-heath and strawberry
tree) and Cistaceae family. On non-silica soils, the maquis
has beendeveloped.Moreover, the development of Aleppo
pine on such soils is quite better in contrast to the Stone
pine [2, 34].

2.2 Data Acquisition

Landsat OLI-8 image was acquired on the 30th of April
2013. It has a nominal center path of 183 and row of 32
according to the Worldwide Reference System. During the
processing of the image, Landsat OLI-8 band 1 and the
thermal spectral bandswere excluded. Spectral band 1 has
been omitted because it is highly correlated with spectral
band 2, and it’s affected by the atmospheric haze [16, 35].
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Figure 1: Location of the study area

Thermal spectral bands were excluded from further anal-
ysis because they give poor classification results due to
their coarse spatial resolution and lack contrast [3, 36, 37].
Ancillary data in the form of thematic maps, orthopho-
tographs, orthophoto maps and aerial photographs were
obtained by the Hellenic Army Geographical Service, The
Ministry for the Environment, Physical Planning and Pub-
licWorks and from theHellenic Forest Service. The vegeta-
tion and geological thematic maps (scale 1:500.000) used
in this studyhavebeendevelopedby theDirectorate of For-
est ResourcesDevelopment,Hellenic Forest Service andby
the Institute of Geology and Mineral Exploration.

Field observations have been done during the spring
of 2013. Themost serious part of the field observationswas
the accurate recognition of the training sites in the field,
in the analog photographs and afterward in the digital im-
ages.

2.3 Development of the classification
scheme

The classification system proposed by Bonazountas et
al. [38] has been used for this study. it has been properly
adjusted to the Coordination of Information on the Envi-
ronment “CORINE” Land Cover System (2006). The follow-
ing classification system was required to establish a list of

12 categories suitable for the study as it illustrated in Fig-
ure 2.

2.4 Compilation of classification procedures

2.4.1 Unsupervised classification

An unsupervised classification is an analytical procedure
based upon clustering, using different algorithms. The
whole image of the study area has been segmented into
12 spectral categories. Various techniques have been used
to get more detailed information. in this study we applied
the Optimum Index Factor (OIF). The algorithm used to
compute OIF for any subset of spectral bands is following
Chavez et al. [39]:

OIF =
∑︀

k=1 sk∑︀
j=1 Abs(rj)

(1)

Where:
sk = is the standard deviation from spectral band k.
rj = is the absolute value of the correlation coefficient be-
tween any of the two spectral bands being evaluated.

The spectral bands combination with the largest OIF
has the most information, as measured by variance, with
the least amount of duplication, as measured by correla-
tion [40, 41].
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Figure 2: The classification scheme

2.4.2 Supervised classification

A supervised classification is described by the potential
distribution of each class in the multispectral dimension.
Therefore, ti’s will be a multivariable distribution with as
many variables as the dimensions of the data [42]. Amulti-
dimensional normal distribution is described as a function
of vector location in multispectral space by the following
algorithm of Richards and Richards [12]:

p (x) = 1
(2π)

N
2 * |

∑︀
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2
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(︁
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*
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Where:
x = is a vector location is N-dimensional pixel space.
m = is the mean position of the spectral class.∑︀

= is the covariancematrix of the distribution,which de-
scribes its spread directionally in the pixel space.

If m and
∑︀

are known for every spectral class in the
image, every pixel can be examined and categorized in the
most likely class, based on the probabilities computed for
the location. In this study, the maximum likelihood classi-
fier has been used, because of its higher accuracy [43, 44].

To do this, an assumption is made that the cloud
points forming the category training data is normally dis-
tributed [45, 46]. The position of the pixel points in amulti-
spectral space can be described by vectors, whose compo-
nents are the individual spectral responses in each spec-
tral band. The mean position of the pixels in space is de-
fined by the expected value of the pixel vector “x” accord-
ing to Richards and Richards [12]:

m = E (x) = 1
k *

k∑︁
j=1

xj (3)

Where:
m = mean pixel vector.
Xj = individual pixel vectors of total number K.
E= expectation operator.

It is of value to have available a means by which the
mean vector defines the average position of the pixels in

multispectral vector space. This is the role of the covari-
ance matrix which is defined as:

∑︁
x

= 1
k − 1

k∑︁
j=1

(︀
xj − m

)︀
* (xj − m)

t (4)

Where:
t = denote vector transpose.

The covariance matrix is one of the most important
mathematical concepts in the analysis of multispectral re-
mote sensing data [47]. So, if there is a correlation between
the responses in a pair of spectral spectral bands, the cor-
responding off-diagonal element in the covariance matrix
will be large by comparison to the diagonal terms. On the
other hand, if there is a little correlation, the off-diagonal
terms will be close to zero [48].

2.5 Accuracy assessment

The final step in the digital image analysis is the evalua-
tion of the accuracy of the classification results. These re-
sults are expressed in tabular form are known as a confu-
sion matrix. The statistical analysis presents the accuracy
and the misfire of the classification based on the ground
truth observations. A distinction is made between errors
of omission and errors of commission. Errors of omission
corresponded to those pixels belonging to the class of in-
terest that the classifier has failed to recognize, whereas
errors of commission are those that corresponded to pix-
els from other classes that the classifier has labeled as be-
longing to the class of interest [49]. The omission refers to
columns of the confusionmatrix, whereas the commission
refers to rows.

The following diagram simplifies the methodological
framework adopted in the current research study as it’s il-
lustrated in Figure 3.

Figure 3: Schematic description of the followed procedures
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3 Results and discussion
Unsupervised and supervised procedures based on the
spectral bands combinations have been used for the clas-
sification of twelve categories in Sithonia peninsula. The
unsupervised classification showed low overall accuracy
while the supervised showed acceptable overall accuracy
for forest purposes. Spectral bands combinations were
used for the best discrimination amongst the individual
categories.

Once the training fields had been identified, there
were grouped according to cover classes. The cover class
groups of training fields were then individually clus-
tered to resolve the cover classes into a set of spectral
classes. The identified percentages of the quotient classi-
fied classes were demonstrated in Figure 4.

The unsupervised classification based on the Iterative
Self-Organizing Data Analysis Technique (ISODATA) algo-
rithm was performed using different spectral bands com-
binations. Table 1 shows the analysis of the classification
results based on OIF that were produced. The evaluation
of different spectral bands combinations is shown in Fig-
ures 5, 6, 7 and 8. In Figure 9, the best spectral bands
combinations, based on OIF for the designated study area
was reported. Maximum likelihood supervised classifica-
tion was performed using the best spectral bands combi-
nations based on OIF is shown in Figure 10.

The overall accuracy and the one for each individual
category were calculated for each set of analyzed data.
Thiswas achieved by using test fields in the study area and
random sampling procedure. In this phase, 270 test sites
were visited and the data were entered in confusion ma-
trices. This type of representation enables to estimate the
omission and commission errors and the overall accuracy
of each category of the study area. The results of the overall
accuracy are shown in Figure 11.

The overall accuracy assessments ranged from68.52%
to 98.15%andwere considered reasonable for forestry pur-
poses by Congalton [49] and Congalton and Green [10].
When spectral bands combination 3-5 (Table 1) was used,
the overall accuracy was the lowest (68.52%). The cate-
gory of conifers was classified with an accuracy ranging
from 62.86% (Pinus nigra) to 84.44% (Pinus halepensis).
Also, there were misclassification errors between the cat-
egories of Pinus halepensis and Pinus nigra and mixed
conifers, maquis and maquis + rocks, range and agricul-
ture, sand and urban areas, range and maquis according
to the statistical separability index. This combination gave
the lowest producer’s accuracy for the categories of Pinus
nigra, maquis + rocks and range (62.86, 46.67 and 54.84 re-

spectively) amongst various spectral bands combinations.
Most of the forest categories were classified with user’s ac-
curacy of less than 80% as the category of maquis showed
the lowest accuracy (46.67%).

The spectral bands combination 3-7 (Table 2) gave an
overall accuracy of 71.11%. Only a little lower than the
spectral bands combinations 3-4-5-6 (71.85%). In this com-
bination, the categories of Pinus halepensis and maquis,
Pinus nigra and mixed conifers, olive trees, and agri-
culture gave the highest misclassification errors with
the lowest producer’s accuracy amongst the other spec-
tral bands combinations. The user’s accuracy was not
satisfactory for 50% of the categories, except the cat-
egories of Pinus halepensis (90.48%), maquis + rocks
(85.00%), broadleaf’s (93.33%), range (80.00%), urban ar-
eas (94.44%) and water (100.00%).

The spectral bands combination 4-6 (Table 3) gave
the second lowest accuracy assessment. Misclassification
errors appeared between the categories Pinus Halepen-
sis and maquis, olive trees and agriculture, sand, and ur-
ban areas. The categories of the maquis, broadleaf’s and
sandwere classified with the lowest accuracies of the vari-
ous spectral bands combinations. The user’s accuracywas
satisfactory only for 42% of the categories (Pinus nigra,
broadleaf’s, range, urban areas, and water).

The spectral bands combination 3-4-5 (Table 4) gave
overall accuracy (88.52%) while the classification errors
appeared between the categories of sand and urban areas,
olive trees and agriculture. The category of broadleaf gave
thehighest producers accuracy (100.00%) as the sameper-
centage appeared with spectral bands combination 4-5-
6 and 3-4-5-6-7. The user’s accuracy was satisfactory for
42.00% pf the categories but it is noticeable that the cat-
egories of conifers gave user’s accuracy between 93.48%
(Pinus halepensis) and 97.96% (mixed conifers), which is
satisfactory for forest purposes [17].

The spectral bands combinations 4-5-6 (Table 5) gave
an overall accuracy of 96.29%, a little lower than the spec-
tral bands combinations 3-4-5-6-7 (98.15%). The categories
of mixed conifers, maquis, maquis + rocks, broadleaf,
urban areas, and sand gave the highest procedure’s ac-
curacy among the various spectral bands combinations.
Most (83.33%) of the categories gave user’s accuracy more
than 89% which is satisfactory [6, 19].

The spectral bands combinations 3-4-5-6 (Table 6)
gave almost the same overall accuracy as spectral bands
combination 3-7 (71.85 and 71.11% respectively). Classifica-
tion errors appeared between the categories ofmaquis and
maquis + rocks, urban areas, and agriculture. The category
urban areas gave the lowest producer’s accuracy amongst
the various spectral bands combinations.
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Table 1:Matrix statistical separability for 3-5 spectral bands combination

Category PH PN MC MA M+R BR RA UA OL AG SA WA
PH 0.00 98.8 99.2 67.6 88.5 95.7 92.5 93.9 80.8 78.6 80.8 99.9
PN 98.8 0.00 75.3 97.5 98.6 99.7 99.7 100 99.4 98.0 99.9 99.9
MC 99.2 75.3 0.00 97.3 98.6 98.6 99.3 99.9 99.2 98.7 99.9 100.0
MA 67.6 97.5 97.3 0.00 0.00 94.2 89.4 95.4 67.6 67.4 97.8 100.0
M+R 88.5 98.6 98.6 80.7 96.3 96.3 74.3 83.4 75.7 76.9 95.6 100.0
BR 95.7 99.7 98.6 94.2 74.3 0.00 95.7 98.8 91.9 96.4 99.4 100.0
RA 92.5 99.7 99.3 89.4 83.4 95.7 0.00 85.3 68.8 90.2 96.6 100.0
UA 93.9 100.0 99.9 95.4 83.4 98.8 85.3 0.00 86.4 93.9 88.0 100.0
OL 80.8 99.4 98.6 77.3 75.7 91.9 68.8 86.4 0.00 82.4 96.4 100.0
AG 78.6 98.0 98.7 67.4 76.9 96.4 90.2 93.9 82.4 0.00 98.0 100.0
SA 97.0 99.9 99.0 97.8 95.6 99.4 96.6 88.0 96.4 98.0 0.00 100.0
WA 99.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.00

Sum of
deviation

0.20 135.5 107.5 142.2 31.5 75.0 108.3 33.4 34.5 131.3 119.5 33.2

Where: PH: Pinus halepensis, PN: Pinus nigra, MC: mixed conifers,
MA: maquis, MR: maquis + rocks, BR: broadleaf, RA: range, UA:

urban area, OL: olive trees, AG: agriculture, SA: sand and WA: water

Figure 4: The contribution of the training fields in the classification

Figure 5: Two spectral bands combination

Figure 6: Three spectral bands combination

Figure 7: Four spectral bands combination
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Figure 8: Five spectral bands combination

Figure 9: Best spectral bands combination, based on OIF

Figure 10:Maximum likelihood classification

Figure 11: Overall accuracy assessment of various spectral bands
combinations

The spectral bands combination 4-5-6-7 (Table 7) gave
higher accuracy than the spectral bands combination 3-
4-5-6 (75.18 and 71.85% respectively). Classification errors
appeared between the categories of maquis and maquis +
rocks, agriculture and olive trees.

The spectral bands combination 3-4-5-6-7 (Table 8)
gave the highest overall accuracy (98.15%). The categories
of Pinus halepensis, Pinus nigra, mixed conifers, maquis,
broadleaf’s, range, olive trees, agriculture, and sand gave
the highest producer’s accuracy amongst the various spec-
tral bands combinations.

Results from the analysis indicated that all the three
spectral regions are suitable for forest cover classification
andmapping [13, 34]. The combination of the visible spec-
tral bands with the near and middle infrared bands give
more accurate mapping results [8, 24].

The visible range of the spectrum seemed separat-
ing forests from other categories, but differentiating re-
sults broadleaf and coniferous forests [1, 9]. The near and
middle infrared give quite satisfactory results in sepa-
rating the two forest categories from each other (Pinus
halepensis and Pinus nigra), with some failures between
the broadleaf’s stands and the range [16, 18] (Figure 12).

4 Conclusions
Some authors claim to achieve better results with super-
vised than an unsupervised classification [7, 50]. It is eas-
ier to delineate well-defined classes by appropriately su-
pervising techniques, but this requires a certain familiar-
ity with the region. For areas, as large and complex as
this study area, an unsupervised method must be used

Unauthenticated
Download Date | 4/18/18 10:17 AM



Landsat-8 Spectral Band Combination in Forest Classification | 475

Table 2:Matrix statistical separability for 3-7 spectral bands combination

Category PH PN MC MA M+R BR RA UA OL AG SA WA
PH 0.00 96.9 92.2 54.0 70.2 71.1 76.9 93.2 67.7 91.2 97.4 98.1
PN 96.9 0.00 77.5 96.2 98.4 99.3 99.8 100.0 99.6 95.6 99.9 100.0
MC 92.2 77.5 0.00 89.6 95.8 96.2 99.1 100.0 98.4 93.1 99.8 98.9
MA 54.0 96.2 96.2 0.00 71.8 69.5 82.4 95.4 73.2 92.5 98.0 98.9
M+R 70.2 98.4 98.4 71.8 0.00 84.8 67.0 81.1 63.8 97.3 94.0 99.8
BR 71.1 99.3 96.2 69.5 84.8 0.00 90.7 98.4 83.8 93.5 98.8 99.2
RA 76.9 99.8 99.1 82.4 81.1 90.7 0.00 81.1 61.3 99.1 95.4 100.0
UA 93.2 100.0 100.0 95.4 67.0 98.4 81.1 0.00 86.3 98.3 85.7 100.0
OL 67.7 99.6 98.4 73.2 81.1 83.8 61.3 86.3 0.00 96.4 96.2 99.9
AG 91.2 95.6 93.1 92.5 63.8 93.5 99.1 98.3 96.4 0.00 98.5 97.2
SA 97.4 99.9 99.8 98.0 94.0 98.9 95.4 85.7 96.2 98.5 0.00 100.0
WA 98.1 100.0 98.9 98.8 99.8 99.2 100.0 100.0 99.9 97.2 100.0 0.00

Sum of
deviation

191.9 37.0 60.4 178.9 176.5 114.3 147.3 80.6 173.7 47.4 36.5 9.90

Table 3:Matrix statistical separability for 4-6 spectral bands combination

Category PH PN MC MA M+R BR RA UA OL AG SA WA
PH 0.00 95.5 89.8 56.5 70.0 100.0 86.6 93.1 77.4 92.4 95.7 99.7
PN 96.0 0.00 77.2 95.5 97.7 72.5 99.9 100.0 99.5 96.4 99.8 100.0
MC 92.4 77.2 0.00 89.8 95.2 82.3 99.5 100.0 98.5 96.8 99.6 100.0
MA 56.5 95.5 89.8 0.00 70.6 83.1 88.2 95.9 77.4 94.5 99.6 99.8
M+R 70.0 97.7 99.5 70.6 0.00 97.9 68.4 83.9 67.3 97.7 96.6 100.0
BR 82.3 98.0 93.5 72.5 80.8 0.00 92.4 98.5 83.1 98.9 90.3 100.0
RA 86.6 99.9 99.5 88.2 68.4 92.4 0.00 78.0 67.5 99.4 97.9 100.0
UA 93.1 100.0 100.0 95.9 83.9 98.0 78.0 0.00 87.2 97.7 88.7 100.0
OL 77.4 99.5 98.5 77.4 67.3 93.5 67.5 87.2 0.00 97.3 93.0 100.0
AG 92.4 96.4 96.8 94.5 97.7 80.8 99.4 97.7 97.3 0.00 98.8 100.0
SA 95.7 99.8 99.6 96.6 90.3 98.9 88.7 81.8 93.0 98.9 0.00 100.0
WA 99.7 100.0 100.0 99.8 100.0 0.0 100.0 100.0 100.0 100.0 100.0 0.00

Sum of
deviation

158 40.0 57.3 162.6 178.1 102.0 131.4 83.9 152.0 29.9 57.0 0.60

Table 4:Matrix statistical separability for 3-4-5 spectral bands combination

Category PH PN MC MA M+R BR RA UA OL AG SA WA
PH 0.00 99.0 99.4 69.9 90.4 97.7 96.1 95.9 85.4 95.7 97.5 100.0
PN 99.0 0.00 78.7 98.0 99.3 99.8 99.9 100.0 99.7 98.2 100.0 100.0
MC 99.4 78.7 0.00 97.5 98.9 99.0 99.7 100.0 99.2 99.5 100.0 100.0
MA 69.9 98.0 97.5 0.00 81.9 95.8 92.8 96.6 80.3 95.5 98.1 100.0
M+R 90.4 99.3 98.9 81.9 0.00 96.8 80.7 86.1 77.9 98.0 96.3 100.0
BR 97.7 99.8 99.0 95.8 96.7 0.00 96.1 99.2 93.3 100.0 99.5 100.0
RA 96.1 99.9 99.7 92.8 80.7 96.1 0.00 89.5 71.5 99.8 97.4 100.0
UA 95.9 100.0 100.0 96.6 86.1 99.2 89.5 0.00 89.3 98.0 89.2 100.0
OL 85.4 99.7 99.2 80.3 77.9 93.3 71.5 89.3 0.00 97.9 96.7 100.0
AG 95.7 98.2 99.5 95.5 98.0 100.0 99.8 98.0 97.9 0.00 99.4 100.0
SA 97.5 100.0 100.0 98.1 96.3 99.5 97.4 89.2 96.7 99.4 0.00 100.0
WA 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.00

Sum of
deviation

73.1 27.5 28.3 93.5 93.8 22.9 76.5 56.2 108 18.1 25.9 0.00
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Table 5:Matrix statistical separability for 4-5-6 spectral bands combination

Category PH PN MC MA M+R BR RA UA OL AG SA WA
PH 0.00 98.8 99.1 69.9 88.6 96.9 93.2 95.4 84.8 95.8 95.8 100.0
PN 98.8 0.00 80.5 98.0 99.3 99.6 100.0 100.0 99.7 98.0 100.0 100.0
MC 99.1 80.5 0.00 97.2 98.9 98.9 99.8 100.0 99.1 99.3 99.9 100.0
MA 69.9 98.0 97.2 0.00 79.8 95.2 91.2 96.8 80.7 95.8 97.0 100.0
M+R 88.6 99.3 98.9 79.8 0.00 96.2 70.9 85.7 76.8 97.9 94.1 100.0
BR 96.6 99.6 98.9 95.2 96.2 0.00 96.6 99.2 92.4 99.9 99.1 100.0
RA 93.2 100.0 99.8 91.2 70.9 96.6 0.00 79.8 71.8 99.5 92.4 100.0
UA 95.4 100.0 100.0 96.8 85.7 99.2 79.8 0.00 88.7 98.2 86.4 100.0
OL 84.8 99.7 99.1 80.7 76.8 92.4 71.8 88.7 0.00 98.0 94.3 100.0
AG 95.8 98.0 99.8 95.8 97.9 99.9 99.5 98.2 98.0 0.00 99.3 100.0
SA 95.8 100.0 99.9 97.0 94.1 99.1 92.4 86.4 94.3 99.3 0.00 100.0
WA 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.00

Sum of
deviation

81.8 26.1 27.3 98.2 111.6 25.9 104.9 69.9 113.7 18.3 41.7 0.00

Table 6:Matrix statistical separability for 3-4-5-6 spectral bands combination

Category PH PN MC MA M+R BR RA UA OL AG SA WA
PH 0.00 99.3 99.2 70.9 90.8 97.9 97.6 96.2 86.0 96.0 98.6 100.0
PN 99.3 0.00 81.2 98.4 99.4 99.7 100.0 100.0 99.8 98.6 100.0 100.0
MC 99.4 81.2 0.00 97.7 99.0 99.0 99.8 100.0 99.2 99.5 100.0 100.0
MA 70.9 98.4 97.7 0.00 82.7 96.2 96.5 97.1 81.8 96.0 98.6 100.0
M+R 90.8 99.4 99.0 82.7 0.00 96.8 91.1 87.6 78.7 98.2 96.8 100.0
BR 97.9 99.8 99.0 96.2 96.8 0.00 97.2 99.4 93.5 100.0 99.7 100.0
RA 97.6 100.0 99.8 96.5 91.1 97.2 0.00 93.1 85.6 99.9 98.7 100.0
UA 96.2 100.0 100.0 97.1 87.6 99.4 93.1 0.00 91.0 98.3 92.6 100.0
OL 86.0 99.8 99.2 81.8 78.7 93.5 85.6 91.0 0.00 98.1 97.9 100.0
AG 96.0 98.6 99.5 96.0 98.2 100.0 99.9 98.3 98.1 0.00 99.6 100.0
SA 98.6 100.0 100.0 98.6 96.8 99.7 98.7 92.6 97.7 99.6 00.0 100.0
WA 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.00

Sum of
deviation

67.4 23.5 25.1 84.2 79.0 20.5 40.5 44.7 88.5 15.8 17.6 0.00

Table 7:Matrix statistical separability for 4-5-6-7 spectral bands combination

Category PH PN MC MA M+R BR RA UA OL AG SA WA
PH 0.00 99.4 99.5 77.0 90.6 97.8 95.7 96.5 89.0 97.0 97.3 100.0
PN 99.4 0.00 83.9 98.5 99.5 99.7 100.0 100.0 99.8 98.2 100.0 100.0
MC 99.5 83.9 0.00 97.5 98.9 99.1 99.9 100.0 99.2 99.3 100.0 100.0
MA 77.0 98.5 97.5 0.00 80.2 95.8 93.7 97.9 83.1 96.1 97.9 100.0
M+R 90.6 99.5 98.9 80.2 0.00 96.6 79.9 90.1 79.6 98.1 95.6 100.0
BR 97.8 99.7 99.1 95.8 96.6 0.00 97.2 99.6 93.4 100.0 99.3 100.0
RA 95.7 100.0 99.9 93.7 79.9 97.2 0.00 89.9 73.5 99.6 94.4 100.0
UA 96.5 100.0 100.0 9.8 90.1 99.6 89.9 0.00 93.2 99.4 89.0 100.0
OL 89.0 99.8 99.2 83.1 79.6 93.4 73.5 93.2 0.00 98.3 95.5 100.0
AG 97.0 98.2 99.3 96.1 98.1 100.0 99.6 99.4 98.3 0.00 99.6 100.0
SA 97.3 100.0 100.0 97.9 95.6 99.3 94.4 89.0 95.5 99.6 0.00 100.0
WA 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.00

Sum of
deviation

60.3 21.1 28.8 82.3 90.8 21.6 76.2 44.4 95.3 14.3 31.5 0.00
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Table 8:Matrix statistical separability for 3-4-5-6-7 spectral bands combination

Category PH PN MC MA M+R BR RA UA OL AG SA WA
PH 0.00 99.6 99.7 77.6 92.5 98.4 98.1 97.1 89.7 97.2 98.8 100.0
PN 99.6 0.00 84.4 98.8 99.5 99.9 100.0 100.0 99.8 98.8 100.0 100.0
MC 99.7 84.4 0.00 97.9 99.0 99.2 99.9 100.0 99.3 99.6 100.0 100.0
MA 77.6 99.8 97.7 0.00 83.2 96.6 97.0 98.1 83.8 96.2 99.0 100.0
M+R 92.5 99.5 99.0 83.2 0.00 97.1 92.2 91.5 81.1 98.5 97.6 100.0
BR 98.4 99.9 99.2 96.6 97.1 0.00 97.6 99.7 94.4 100.0 99.8 100.0
RA 98.1 100.0 99.9 97.0 92.2 97.6 0.00 96.5 85.9 99.9 99.3 100.0
UA 97.1 100.0 100.0 98.1 91.5 99.7 96.5 0.00 94.9 99.5 93.6 100.0
OL 89.7 99.8 99.3 83.8 81.1 94.4 85.9 94.9 0.00 98.4 98.5 100.0
AG 97.2 98.8 99.6 96.2 98.5 100.0 99.9 99.5 98.4 0.00 99.7 100.0
SA 98.8 100.0 100.0 99.0 97.6 99.8 99.3 93.6 98.5 99.7 0.00 100.0
WA 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.00

Sum of
deviation

58.6 19.7 26.3 97.9 85.2 19.5 75.1 42.5 91.6 13.1 27.4 0.00

Where: PH: Pinus halepensis, PN: Pinus nigra, MC: mixed conifers,
MA: maquis, MR: maquis + rocks, BR: broadleaf, RA: range, UA: ur-
ban area, OL: olive trees, AG: agriculture, SA: sand and WA: water

Figure 12: Classification accuracy assessment of different cate-
gories of various spectral bands combinations

initially to obtain an indication of the spectral variability
of the various categories. Once the unsupervised classifi-
cation gives a general knowledge of the study area, then
the supervised classification will yield greater accuracy in
separating forest types, which most of the time have re-
flectances values close to each other. By utilizing the vis-
ible, near and mid-infrared parts of the electromagnetic
spectrum gave an overall accuracy more than 98.10% can
be achieved. High classification accuracies ranging from
82.61% to98.15% for thePinus halepensis category resulted
from the analysis of the various spectral bands combina-
tion. For the category ofPinus nigra, the classification over-
all accuracy ranged between 62.86% and 96.77%while the
mixed conifers between 57.14% and 95.45%. The category

of maquis can be classified and mapped with accuracies
ranging from 72.22% to 100%; the category of maquis +
rocks lead to misclassification results, due to the presence
of different amount of rocks which affected the spectral
behavior of this category. The broadleaf’s classified, with
overall accuracy ranging between 52.63% and 100%. The
range category can be classified with accuracies ranging
from 54.84% to 96.15%; the lower limit was due to classifi-
cation errors between this category and maquis category,
as in Sithonia there are not improved pasture, but only
degraded forested lands where maquis predominate. The
olive trees and agriculture categories lead several times to
classification errors, due to the similar spectral responce.
The agricultural lands showed the lowest overall accu-
racy (40% in spectral bands combination 3-7). The cate-
gory sand showed the lowest accuracy (40%) in spectral
bands combination 3-5 and4-6.This categorywas confused
with the category of urban areas due to the course reso-
lution of the image (mixed pixel).. Water, on the contrary,
was classified with the highest accuracy (100%). Finally,
it seems that, spectral bands 3-4-5-6-7 are the most suit-
able for forest inventories. It should be noticed that more
detailed inventory during the development of the train-
ing sites should have been done because the classification
proved the presence of broadleaf’s in ravines, where no
training data were collected.

Acknowledgement: This article was funded by the Dean-
ship of Scientific Research (DSR) at KingAbdulaziz Univer-
sity, Jeddah. The authors, therefore, acknowledged with
thanks DSR for technical and financial support.

The author declares no conflict of interest regarding
the publication of this manuscript.

Unauthenticated
Download Date | 4/18/18 10:17 AM



478 | M. Elhag

References
[1] Nelson, R.F., R. Latty, and G. Mott, Classifying northern forests

using Thematic Mapper simulator data. 1984.
[2] Yuan, F., et al., Multi-level land cover mapping of the Twin

Cities (Minnesota) metropolitan area with multi-seasonal Land-
sat TM/ETM+ data. Geocarto International, 2005. 20(2): p. 5-13.

[3] Tou, J. and R. Gonzales, Pattern Recognition Principles.
Addison-Weley. Reading, MA, 1974. 377.

[4] Spanner, M.A., J.A. Brass, and D.L. Peterson, Feature selection
and information content of thematic mapper simulator data for
a forested environment. 1983.

[5] Clinton, N., et al., Accuracy assessment measures for object-
based image segmentation goodness. Photogrammetric Engi-
neering and remote sensing, 2010. 76(3): p. 289-299.

[6] Rogan, J., et al., Land-cover change monitoring with classifica-
tion trees using Landsat TM and ancillary data. Photogrammet-
ric Engineering & Remote Sensing, 2003. 69(7): p. 793-804.

[7] Elhag, M., A. Psilovikos, and M. Sakellariou, Detection of land
cover changes for water recourses management using remote
sensing data over the Nile Delta Region. Environment, Develop-
ment and Sustainability, 2013. 15(5): p. 1189-1204.

[8] Friedl, M.A., et al., MODIS Collection 5 global land cover: Al-
gorithm refinements and characterization of new datasets. Re-
mote sensing of Environment, 2010. 114(1): p. 168-182.

[9] Ghimire, B., J. Rogan, and J. Miller, Contextual land-cover clas-
sification: incorporating spatial dependence in land-cover clas-
sification models using random forests and the Getis statistic.
Remote Sensing Letters, 2010. 1(1): p. 45-54.

[10] Congalton, R.G. and K. Green, Assessing the accuracy of re-
motely sensed data: principles and practices. 2008: CRC press.

[11] Townshend, J.R., et al., Global characterization and monitor-
ing of forest cover using Landsat data: opportunities and chal-
lenges. International Journal of Digital Earth, 2012. 5(5): p. 373-
397.

[12] Richards, J.A. and J. Richards, Remote sensing digital image
analysis. Vol. 3. 1999: Springer.

[13] Gislason, P.O., J.A. Benediktsson, and J.R. Sveinsson, Random
forests for land cover classification. Pattern Recognition Let-
ters, 2006. 27(4): p. 294-300.

[14] Betts, R.A., et al., Biogeophysical effects of land use on climate:
Model simulations of radiative forcing and large-scale tempera-
ture change. Agricultural and forest meteorology, 2007. 142(2):
p. 216-233.

[15] Chapman, D.S., et al., RandomForest characterization of upland
vegetation and management burning from aerial imagery. Jour-
nal of Biogeography, 2010. 37(1): p. 37-46.

[16] Hansen, M.C., et al., High-resolution global maps of 21st-
century forest cover change. science, 2013. 342(6160): p. 850-
853.

[17] Gong, P., et al., Finer resolution observation and monitoring
of global land cover: First mapping results with Landsat TM
and ETM+ data. International Journal of Remote Sensing, 2013.
34(7): p. 2607-2654.

[18] Lunetta, R.S. and M.E. Balogh, Application of multi-temporal
Landsat 5 TM imagery for wetland identification. Photogram-
metric Engineering and Remote Sensing, 1999. 65(11): p. 1303-
1310.

[19] Li, C., et al., Comparison of classification algorithms and train-
ing sample sizes in urban land classification with Landsat the-
matic mapper imagery. Remote Sensing, 2014. 6(2): p. 964-
983.

[20] Davis, S.M., et al., Remote sensing: the quantitative approach.
New York, McGraw-Hill International Book Co., 1978. 405 p.,
1978. 1.

[21] Manolakis, D. and G. Shaw, Detection algorithms for hyper-
spectral imaging applications. IEEE signal processing maga-
zine, 2002. 19(1): p. 29-43.

[22] Mallinis, G., et al., Forest parameters estimation in a European
Mediterranean landscape using remotely sensed data. Forest
Science, 2004. 50(4): p. 450-460.

[23] Gausman, H., et al., Reflectance discrimination of cotton and
corn at four growth stages. Agronomy Journal, 1973. 65(2): p.
194-198.

[24] Lathrop, R., T.M. Lillesand, and B.S. Yandell, An evaluation of
ThematicMapper data for forest covermapping in northernWis-
consin. Proc. 11th Pecora Sym., Sioux Falls, SD, 1987: p. 386-
393.

[25] Elhag, M., Evaluation of different soil salinity mapping using
remote sensing techniques in arid ecosystems, Saudi Arabia.
Journal of Sensors, 2016. 2016.

[26] Murtha, P. and E.Watson.Mapping of forest clear-cutting, south
Vancouver Island, from Landsat imagery. in Canadian Sympo-
sium on Remote Sensing, 3 rd, Edmonton, Alberta, Canada.
1976.

[27] Coggeshall, M.E. and R.M. Hoffer, Basic forest cover mapping
using digitized remote sensor data and automated data pro-
cessing techniques. 1973.

[28] Duda, R.O., P.E. Hart, and D.G. Stork, Pattern classification. Vol.
2. 1973: Wiley New York.

[29] Briem,G.J., J.A. Benediktsson, and J.R. Sveinsson,Multiple clas-
sifiers applied to multisource remote sensing data. IEEE trans-
actions on geoscience and remote sensing, 2002. 40(10): p.
2291-2299.

[30] Lippitt, C.D., et al., Mapping Selective Logging in Mixed Decid-
uous Forest. Photogrammetric Engineering & Remote Sensing,
2008. 74(10): p. 1201-1211.

[31] Franklin, S. andM.Wulder, Remote sensingmethods inmedium
spatial resolution satellite data land cover classification of large
areas. Progress in Physical Geography, 2002. 26(2): p. 173-205.

[32] Bonan, G.B., Forests and climate change: forcings, feedbacks,
and the climate benefits of forests. science, 2008. 320(5882):
p. 1444-1449.

[33] Steele, B.M., Combining multiple classifiers: An application us-
ing spatial and remotely sensed information for land cover type
mapping. Remote sensing of environment, 2000. 74(3): p. 545-
556.

[34] Rogan, J., et al., Mapping land-cover modifications over large
areas: A comparison of machine learning algorithms. Remote
Sensing of Environment, 2008. 112(5): p. 2272-2283.

[35] Huang, H., et al., Reduction of atmospheric and topographic ef-
fect on Landsat TM data for forest classification. International
Journal of Remote Sensing, 2008. 29(19): p. 5623-5642.

[36] Coppin, P.R. and M.E. Bauer, Digital change detection in forest
ecosystems with remote sensing imagery. Remote sensing re-
views, 1996. 13(3-4): p. 207-234.

[37] Hopkins, P.F., A.L. Maclean, and T.M. Lillesand, Assessment of
Thematic Mapper imagery for forestry applications under Lake

Unauthenticated
Download Date | 4/18/18 10:17 AM



Landsat-8 Spectral Band Combination in Forest Classification | 479

States conditions. Photogrammetric Engineering and Remote
Sensing, 1988. 54(1): p. 61-68.

[38] Bonazountas, M., et al., A decision support system for man-
aging forest fire casualties. Journal of Environmental Manage-
ment, 2007. 84(4): p. 412-418.

[39] Chavez Jr, P.S., G.L. Berlin, and L.B. Sowers, Statistical Method
for Selecting Landsat MSS. Journal of applied photographic en-
gineering, 1982. 8(1): p. 23-30.

[40] DeFries, R. and J.C.-W. Chan, Multiple criteria for evaluating
machine learning algorithms for land cover classification from
satellite data. Remote Sensing of Environment, 2000. 74(3): p.
503-515.

[41] Cutler, D.R., et al., Random forests for classification in ecology.
Ecology, 2007. 88(11): p. 2783-2792.

[42] Elhag, M. and J.A. Bahrawi, Conservational use of remote sens-
ing techniques for a novel rainwater harvesting in arid envi-
ronment. Environmental earth sciences, 2014. 72(12): p. 4995-
5005.

[43] Sesnie, S.E., et al., Integrating Landsat TM and SRTM-DEM de-
rived variables with decision trees for habitat classification and
changedetection in complex neotropical environments. Remote
Sensing of Environment, 2008. 112(5): p. 2145-2159.

[44] Foody, G.M., Sample size determination for image classification
accuracy assessment and comparison. International Journal of
Remote Sensing, 2009. 30(20): p. 5273-5291.

[45] Petropoulos, G., et al., A global Bayesian sensitivity analysis of
the 1d SimSphere soil–vegetation–atmospheric transfer (SVAT)
model using Gaussian model emulation. Ecological Modelling,
2009. 220(19): p. 2427-2440.

[46] Elhag, M., Inconsistencies of SEBS Model Output Based on the
Model Inputs: Global Sensitivity Contemplations. Journal of the
Indian Society of Remote Sensing, 2016. 44(3): p. 435-442.

[47] Psilovikos, A. and M. Elhag, Forecasting of remotely sensed
daily evapotranspiration data over Nile Delta region, Egypt. Wa-
ter Resources Management, 2013. 27(12): p. 4115-4130.

[48] Elhag, M. and J.A. Bahrawi, Soil salinity mapping and hydro-
logical drought indices assessment in arid environments based
on remote sensing techniques. Geoscientific Instrumentation,
Methods and Data Systems, 2017. 6(1): p. 149.

[49] Congalton, R.G., A review of assessing the accuracy of classi-
fications of remotely sensed data. Remote sensing of environ-
ment, 1991. 37(1): p. 35-46.

[50] Elhag, M. and J.A. Bahrawi, Realization of daily evapotran-
spiration in arid ecosystems based on remote sensing tech-
niques. Geoscientific Instrumentation, Methods and Data Sys-
tems, 2017. 6(1): p. 141.

Unauthenticated
Download Date | 4/18/18 10:17 AM


	1 Introduction
	2 Materials and Methods
	2.1 Study Area
	2.2 Data Acquisition
	2.3 Development of the classification scheme
	2.4 Compilation of classification procedures
	2.4.1 Unsupervised classification
	2.4.2 Supervised classification

	2.5 Accuracy assessment

	3 Results and discussion 
	4 Conclusions 

