ECOLOGY OF FRESH WATERS
Man and Medium, Past to Future

BRIAN MOSS

THIRD EDITION
Contents

Preface and Acknowledgements, xv

1 Introduction: the Pantanal, 1
 1.1 The environmental theatre, 1
 1.2 The evolutionary play, 2
 1.3 The freshwater part of the stage, 3
 1.4 The Pantanal, 4
 1.4.1 The physical and chemical environment, 4
 1.4.2 Biogeography of the Pantanal, 6
 1.4.3 The present biota, 9
 1.4.4 Community structure, 10
 1.4.5 Vertebrates other than fish, 10
 1.4.6 Humans, 11
 1.5 End of the overture, 13

2 On Living in Water, 14
 2.1 Properties of water, 15
 2.1.1 Physical properties, 15
 2.1.2 Water as a solvent, 17
 2.1.3 Solubility of non-ionic compounds, 19
 2.2 Land and water habitats and the evolution of aquatic organisms, 20
 2.2.1 Physiological problems of living in water, 21
 2.2.2 Brackish and freshwater invertebrates, 22
 2.2.3 Osmotic relationships in vertebrates, 23
 2.2.4 Colonisation of fresh waters from the land, 24
 2.2.5 Respiration in water, 26
 2.2.6 Invertebrate air breathers in fresh waters, 27
 2.1 Time and fleetingness—a fundamental difference between freshwater and
 marine ecosystems, 28
 2.3.1 Low diversity and the colonisation of fresh waters, 28
 2.3.2 Evolution in freshwater habitats, 31
 2.3.3 Evolution in tropical African lakes, 31

3 From Atmosphere to Stream: the Chemical Birth of Fresh Waters, 36
 3.1 Dissolving of atmospheric gases and the acidity of rain, 36
 3.1.1 Carbon dioxide and sulphur gases, 36
 3.2 Contribution of sea spray to rain, 37
3.3 Atmospheric pollution. 37
 3.3.1 Carbon and sulphur. 37
 3.3.2 Nitrogen. 39
 3.3.3 Acid precipitation. 41
 3.3.4 Nutrients delivered by the atmosphere. 41
 3.3.5 Models of nitrogen deposition. 42
3.4 The composition of water draining from the catchments. 44
 3.4.1 A chemical catalogue for runoff waters. 44
 3.4.2 Rock weathering. 47
 3.4.3 Weathering of igneous rocks. 47
 3.4.4 Sedimentary and metamorphic rocks. 49
 3.4.5 Weathering of sedimentary rocks. 49
 3.4.6 Links between geology and water chemistry. 51
3.5 Effects of soil development and vegetation on the chemistry of drainage waters. 52
 3.5.1 Nitrogen fixation. 53
 3.5.2 Storage in the plant biomass. 54
 3.5.3 Vegetation and the supply of suspended silt and dissolved and suspended organic matter to drainage waters. 60
 3.5.4 Particulate organic matter. 60
 3.5.5 Dissolved organic matter. 61
 3.5.6 Labile organic compounds. 62
3.6 Effects of human activities on the composition of drainage waters. 63
 3.6.1 Agriculture. 63
 3.6.2 Catchment planning and export-coefficient models. 65
 3.6.3 Agricultural chemicals other than nutrients. 68
 3.6.4 Settlement. 70
 3.6.5 Industry. 71
 3.6.6 Disposal and consents. 73
 3.6.7 Industrial atmospheric sources. 75
3.7 The water rolls downhill. 75

4 Erosive Streams and Rivers, 77
4.1 Introduction. 77
 4.1.1 A model stream. 77
4.2 Upland streams – three general questions. 80
 4.2.1 On the rocks. 80
 4.2.2 Adaptation to moving water. 83
 4.2.3 Drift. 84
4.3 Sources of food and energy flow in erosive streams. 86
 4.3.1 Hot-spring streams. 86
 4.3.2 Streams in wooded catchments – Bear Brook. 89
 4.3.3 Mechanics of processing of organic matter in woodland streams. 92
 4.3.4 The shredders. 92
 4.3.5 Collectors, scrapers and carnivores. 94
 4.3.6 New Zealand streams. 96
 4.3.7 Fish in upland streams. 99
5 Lowland Rivers, their Floodplains and Wetlands, 123

5.1 Submerged plants, 121
5.2 Growth of submerged plants, 127
5.3 Methods of measuring the primary productivity of submerged plants, 130
 5.3.1 Whole-community methods, 130
 5.3.2 Enclosure methods, 131
5.4 Submerged plants and the river ecosystem, 134
 5.4.1 Plant-bed management in rivers, 134
 5.4.2 Ecotoxicology – the testing of potentially hazardous chemicals, 136
5.5 Further downstream – swamps and flood-plains, 138
 5.5.1 Productivity of swamps and flood-plain marshes, 138
 5.5.2 Swamp soils and the fate of the high primary production, 139
 5.5.3 Oxygen supply and soil chemistry in swamps, 140
 5.5.4 Emergent plants and flooded soils, 143
5.6 Swamp and marsh animals, 144
 5.6.1 Whitefish and blackfish, 145
5.7 Human societies of floodplains, 149
 5.7.1 Tolerators – the marsh Arabs, 149
 5.7.2 Migrants – the Nuer of southern Sudan, 150
5.8 Floodplain fisheries, 154
5.9 Modification of floodplain ecosystems, 156
 5.9.1 Wetland values, 156
 5.9.2 Swamps and nutrient retention – reed-bed treatment, 158
 5.9.3 Floodplain swamps and human diseases, 160
5.10 Drainage and other alterations to floodplain ecosystems, 164
 5.10.1 The Florida Everglades, 164
 5.10.2 Drainage and river management in temperate regions, 170
 5.10.3 River restoration, 172
 5.10.4 Approaches and methods of river and floodplain restoration, 173
5.11 Lowland river channels, 179
 5.11.1 Pollution by organic matter, 180
 5.11.2 Sewage treatment, 181
6 Lakes, Pools and Other Standing Waters: Some Basic Features of their Productivity, 196

6.1 Exorheic lakes, 198

6.2 The essential features and parts of a lake, 202
 6.2.1 Light availability, 202
 6.2.2 The euphotic zone, 205
 6.2.3 Thermal stratification and the structure of water masses, 207
 6.2.4 Key nutrients, 212
 6.2.5 Nutrient ‘limitation’, 213
 6.2.6 How the total phosphorus or nitrogen concentrations of a lake come about, 215
 6.2.7 Demonstration of catchment dependence, 216
 6.2.8 Consequences of thermal stratification, 217
 6.2.9 Consequences for water chemistry, 220
 6.2.10 Sediment and the oxygenated microzone, 222
 6.2.11 Shallow lakes, tropical lakes and other scenarios, 223
 6.2.12 Aquatic plant communities and the morphometry of basins, 227
 6.2.13 Alternative stable states in shallow lakes, 228

6.3 General models of lake production, 232
 6.3.1 Models incorporating other features, 234

6.4 Eutrophication and acidification – human-induced changes in the production of lakes, 235
 6.4.1 Eutrophication, 235
 6.4.2 Eutrophication in the tropics – Lake Victoria, 238
 6.4.3 Solving the eutrophication problem, 240
 6.4.4 What are the present supplies of phosphorus and their relative contributions? 241
 6.4.5 Relationship of the phosphorus concentration to the algal crop, 242
 6.4.6 Methods available for reducing total phosphorus loads, 243
 6.4.7 In-lake methods, 247
 6.4.8 Complications for phosphorus control – sediment sources, 248
 6.4.9 Shallow-lake restoration, 251
 6.4.10 Twists in the tails, 253

6.5 Acidification, 255
 6.5.1 Remediation, 255
 6.5.2 Targets, 257

6.6 Variations on the theme – other standing waters, 260
7 The Plankton and Fish Communities of the Open Water of Lakes, 267

7.1 The structure of the plankton community, 267
7.2 Phytoplankton, 269
 7.2.1 Photosynthesis and growth of phytoplankton, 273
 7.2.2 Net production and growth, 276
 7.2.3 Nutrient uptake and growth rates of phytoplankton, 277
 7.2.4 Distribution of freshwater phytoplankton, 279
 7.2.5 The desmid plankton, 280
 7.2.6 Washout, mixing and stratification, 284
 7.2.7 Blue-green algal blooms, 284
 7.2.8 Phytoplankton communities, toxic algae and drinking-water, 287
7.3 Microconsumers of the phytoplankton – bacteria, 289
7.4 Protozoa and fungi, 290
7.5 Zooplankton, 291
 7.5.1 Grazing, 294
 7.5.2 Feeding and grazing rates of zooplankton, 297
 7.5.3 Competition among grazers, 298
 7.5.4 Predation in the zooplankton, 299
7.6 Fish in the open-water community, 305
 7.6.1 Predation on the zooplankton and fish production, 308
 7.6.2 Predation by fish and the composition of zooplankton communities, 309
 7.6.3 Predator avoidance by the zooplankton, 311
 7.6.4 Piscivores and piscivory, 313
 7.6.5 A key role for Daphnia, 314
7.7 Functioning of the open-water community, 315
 7.7.1 Cycling of phosphorus in the plankton, 315
 7.7.2 The nitrogen cycle in the plankton, 317
7.8 Seasonal changes in the plankton, 319
 7.8.1 Mechanisms underlying algal periodicity, 322
7.9 Practical applications of plankton biology: treatment of eutrophication by biomanipulation in deep lakes, 325
 7.9.1 Experiments on whole lakes, 328
 7.9.2 Scope of biomanipulation, 331

8 The Littoral and Profundal Communities of Lakes, 334
8.1 A variety of habitats, 334
8.2 Submerged plant communities in lakes, 338
 8.2.1 Microbial communities in plant beds, 341
 8.2.2 Epiphytic algae, 341
 8.2.3 Invertebrates, 345
8.3 Competition between submerged plants and phytoplankton, 350
8.3.1 Consequences of the loss of aquatic plants, 352
8.3.2 Restoration of shallow lakes back to plant dominance, 354
8.3.3 Ponds and pond loss, 356
8.4 Bare rocks and sandy littoral habitats, 358
8.4.1 Distribution of trilobids in the British Isles, 359
8.4.2 Rocky-shore communities, 361
8.4.3 Specialization in the rocky littoral, 363
8.4.4 Sandy shores, 365
8.4.5 Zebra mussels – a problem, 366
8.5 Relationships between the littoral zone and the open water, 367
8.6 The profundal benthos, 370
8.6.1 Biology of selected benthic invertebrates, 373
8.6.2 What the sediment-living invertebrates really eat, 377
8.7 Influence of the open-water community on the profundal benthos, 378

9 Fish and Fisheries in Lakes, 386
9.1 Some basic fish biology, 386
9.1.1 Eggs, 388
9.1.2 Feeding, 389
9.1.3 Breeding, 391
9.2 Choice of fish for a fishery, 396
9.3 Measurement of fish production, 399
9.3.1 Growth measurement, 401
9.3.2 Fish production in lakes, 403
9.4 Commercial fisheries, 404
9.5 The North Buvuma Island fishery, 407
9.5.1 Estimation of t_B, F_e and M_B for the Buvuma Oreochromis fishery, 408
9.6 Approximate methods for yield assessment, 411
9.7 Changes in fisheries, 413
9.7.1 The North American Great Lakes, 413
9.7.2 The East African Great Lakes, 416
9.8 Fish culture, 423
9.9 Still-water angling, 424

10 The Birth, Development and Extinction of Lakes, 428
10.1 Introduction, 428
10.2 Man-made lakes, 430
10.2.1 Fisheries in new tropical lakes, 434
10.2.2 Effects downstream of the new lake, 435
10.2.3 New tropical lakes and human populations, 436
10.2.4 Man-made tropical lakes – the balance of pros and cons, 436
10.3 The development of lake ecosystems, 438
10.3.1 Dating the sediment, 439
10.3.2 Radiometric-decay techniques, 441
10.3.3 Non-radiometric-decay methods, 442
10.4 Sources of information in sediments, 444
10.4.1 Chemistry, 444
10.4.2 Fossils. 448
10.4.3 Diatom remains. 450
10.4.4 Pollen. 453
10.4.5 General problems of interpretation of evidence from sediment cores. 454

10.5 Examples of lake development. 455
10.5.1 Blea Tarn, English Lake District. 455
10.5.2 Fathwaite. 457
10.5.3 Pickerel Lake. 460
10.5.4 White Mere. 462
10.5.5 Lago di Monterosi. 464
10.5.6 Lake Valencia. 466

10.6 Filling in of shallow lakes. 468
10.6.1 Tarn Moss, Malham. 468

10.7 Patterns in the development of lakes and the concept of natural eutrophication. 471

11 Fresh Waters, the World and the Future, 473
11.1 Introduction. 473
11.1.1 Population, food supply and water. 476
11.1.2 Resource use and water. 478
11.1.3 Technology and water. 479

11.2 Trends in freshwater science. 480
11.2.1 New genetic technologies. 480
11.2.2 Ecotoxicology. 481
11.2.3 Levels of approach. 483

11.3 Advances in monitoring techniques. 485

11.4 Solving the problems. 487
11.4.1 Treaties. 488
11.4.2 Consequences of evolution? 492

11.5 Alternative states and human societies. 493
11.5.1 The future. 498

References, 501

Index, 533

Colour plates fall between pp. 144 and 145