Plankton community structure during an ecosystem disruptive algal bloom of *Prymnesium parvum*

EVANGELIA MICHALOUDI1*, MARIA MOUSTAKA-GOUNI, SPIROS GEKELIS3 AND KIMON PANTELIDAKIS1,2

1LABORATORY OF ECOLOGY, SCHOOL OF BIOLOGY, ARISTOTLE UNIVERSITY OFThessaloniki, GR-541 24 Thessaloniki, Greece and 2DEPARTMENT OF BIOTECHNOLOGY, SCHOOL OF BIOLOGY, ARISTOTLE UNIVERSITY OF Thessaloniki, GR-541 24 Thessaloniki, Greece

*Corresponding Author: th01@bio.auth.gr

Received: August 22, 2008; accepted in principle October 30, 2008; accepted for publication November 4, 2008; published online 26 November, 2008.

Corresponding editor: William Li

The purpose of this paper was to study the plankton food web structure in Lake Koronia during an extremely dense bloom of *Prymnesium parvum*. The *Prymnesium* bloom fulfilled the main criteria of an ecosystem disruptive algal bloom, since it was a massive persistent, monospecific bloom which disrupted the dynamics of the plankton community. It appeared after an N-fixing cyanobacterial bloom, when a decrease in temperature and low nitrogen conditions may have caused a positive feedback, which allowed the replacement of cyanobacteria by the invasive *Prymnesium*. The initiation of the bloom was further facilitated by the disruption of zooplankton grazing, with the biomass of the primary grazers, rotifers and cladocerans, dropping to undetectable levels. Furthermore, the rest of the phytoplankton responded to the onset of the bloom by an 82% decrease. Cyanobacteria and diatoms exhibited the highest decrease in biomass (95 and 99%), respectively followed by chlorophytes (55% decrease). This enabled the uncontrolled increase of the *P. parvum* population to numbers close to the highest abundances ever recorded. At that point, the grazing community was reinstantiated and the system became replete with nutrients with an NP ratio of 10:1. This coincided with the beginning of the bloom termination, which was followed by an increase in the biomass of competing phytoplankton.

INTRODUCTION

Harmful algal blooms (HABs) are being recorded with increasing frequency in coastal and inland waters due to enhanced eutrophication and global climate change (Anderson *et al.*, 2002). Apart from the obvious harm to humans, HABs may disrupt ecosystem structure and function. In such cases, they are referred to as ecosystem disruptive algal blooms (EDABs) (Sunda *et al.*, 2006).

The haptophyte *Prymnesium parvum* is included among the species considered to cause EDABs (Sunda *et al.*, 2006). Its blooms are usually accompanied by massive deaths of fish in coastal aquaculture areas leading to great financial loss (e.g. Kaartvedt *et al.*, 1991; Lindholm *et al.*, 1999). This has led to extensive research in an attempt to elucidate the factors leading to the formation of such blooms and regulating their toxicity. Nevertheless, very little has been published regarding field data, especially in the Mediterranean limnetic systems (Lindholm *et al.*, 1999; Marioli and Simoni, 1999). These may represent the "future" of the temperate cold systems under the influence of climate change (Alvarez-Cobelas *et al.*, 2005).

In August–September 2004, an extremely dense bloom of the haptophyte *P. parvum* was observed in Lake Koronia, the present status of which is a current example of unsustainable water resources management and weather adverse effects (Michaloudi and Kostecka, 2004). This bloom coincided with a mass bird (thousands) and fish (hundreds) kill (Moustaka-Gouni *et al.*, 2004). Avian deaths have not been previously
were completely suppressed in the laboratory bioassays performed by Fisterol et al. (Fisterol et al., 2003). The group least affected during the *Pseudanom* bloom in Lake Koronia were chlorophytes. The largest decrease in chlorophyte biomass was observed on 17 September by the end of the bloom. This decrease is possibly related to increased grazing rates by rotifers. The cryptophytes represented by *Cryptomonas* sp. exhibited a peak population on 11 September but declined rapidly a week later. Cryptophytes have been found to be affected through both the release of allelopathic compounds and predation of *Pseudanom* (Barreiro et al., 2005). Predation by *Pseudanom* was not observed in our live samples.

In conclusion, the *P. parvum* bloom recorded in Lake Koronia constituted an EDAB since it was a massive persistent, monospecific bloom, which disrupted the dynamics of the plankton food web components. The conditions leading to the initiation of the bloom involved an N-fixing cyanobacterial pre-bloom and low nitrogen concentrations. Limited grazing during bloom initiation, with rotifers and cladocerans reaching undetectable numbers constituted a positive feedback for the establishment of the EDAB (Sunda et al., 2006). This feedback was further facilitated by the large decrease in the biomass of other phytoplankton which competed with *P. parvum* for nutrients and light. The *Pseudanom* bloom was most probably terminated by the continuous positive feedback which triggered the formation of cysts.

ACKNOWLEDGEMENTS

We would like to thank the two anonymous reviewers for their constructive criticisms and suggestions. We would also like to thank E. Voultsiadou for linguistic suggestions.

REFERENCES

